These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 37163825)

  • 41. Rapid microfluidics prototyping through variotherm desktop injection molding for multiplex diagnostics.
    Suarez GD; Bayer S; Tang YYK; Suarez DA; Cheung PP; Nagl S
    Lab Chip; 2023 Aug; 23(17):3850-3861. PubMed ID: 37534874
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications.
    O'Neill PF; Ben Azouz A; Vázquez M; Liu J; Marczak S; Slouka Z; Chang HC; Diamond D; Brabazon D
    Biomicrofluidics; 2014 Sep; 8(5):052112. PubMed ID: 25538804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid prototyping of polydimethylsiloxane (PDMS) microchips using electrohydrodynamic jet printing: Application to electrokinetic assays.
    Choubey A; Dubey K; Bahga SS
    Electrophoresis; 2023 Apr; 44(7-8):725-732. PubMed ID: 36774545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres.
    Lölsberg J; Linkhorst J; Cinar A; Jans A; Kuehne AJC; Wessling M
    Lab Chip; 2018 May; 18(9):1341-1348. PubMed ID: 29619449
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Configurable 3D Printed Microfluidic Multiport Valves with Axial Compression.
    Diehm J; Hackert V; Franzreb M
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683297
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Additive Biotech-Chances, challenges, and recent applications of additive manufacturing technologies in biotechnology.
    Krujatz F; Lode A; Seidel J; Bley T; Gelinsky M; Steingroewer J
    N Biotechnol; 2017 Oct; 39(Pt B):222-231. PubMed ID: 28890405
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications.
    Deliorman M; Ali DS; Qasaimeh MA
    Biomed Eng Comput Biol; 2023; 14():11795972231214387. PubMed ID: 38033395
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication.
    Cao UMN; Zhang Y; Chen J; Sayson D; Pillai S; Tran SD
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834645
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic Approaches for Microactuators: From Fabrication, Actuation, to Functionalization.
    Ma ZC; Fan J; Wang H; Chen W; Yang GZ; Han B
    Small; 2023 Jun; 19(22):e2300469. PubMed ID: 36855777
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid Customization of 3D Integrated Microfluidic Chips via Modular Structure-Based Design.
    Qiu J; Gao Q; Zhao H; Fu J; He Y
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2606-2616. PubMed ID: 33465916
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Leveraging interactions in microfluidic droplets for enhanced biotechnology screens.
    Vitalis C; Wenzel T
    Curr Opin Biotechnol; 2023 Aug; 82():102966. PubMed ID: 37390513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers.
    Khetani S; Yong KW; Ozhukil Kollath V; Eastick E; Azarmanesh M; Karan K; Sen A; Sanati-Nezhad A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6910-6923. PubMed ID: 31971367
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Typography-Like 3D-Printed Templates for the Lithography-Free Fabrication of Microfluidic Chips.
    Su W; Li Y; Zhang L; Sun J; Liu S; Ding X
    SLAS Technol; 2020 Feb; 25(1):82-87. PubMed ID: 31381466
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soft tubular microfluidics for 2D and 3D applications.
    Xi W; Kong F; Yeo JC; Yu L; Sonam S; Dao M; Gong X; Lim CT
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10590-10595. PubMed ID: 28923968
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials.
    Visser CW; Kamperman T; Karbaat LP; Lohse D; Karperien M
    Sci Adv; 2018 Jan; 4(1):eaao1175. PubMed ID: 29399628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.