These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 37163836)
1. A comparative study of data-driven models for runoff, sediment, and nitrate forecasting. Zamani MG; Nikoo MR; Rastad D; Nematollahi B J Environ Manage; 2023 Sep; 341():118006. PubMed ID: 37163836 [TBL] [Abstract][Full Text] [Related]
2. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition. Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381 [TBL] [Abstract][Full Text] [Related]
3. Intercomparison of SWAT and ANN techniques in simulating streamflows in the Astore Basin of the Upper Indus. Khan S; Khan AU; Khan M; Khan FA; Khan S; Khan J Water Sci Technol; 2023 Oct; 88(7):1847-1862. PubMed ID: 37831000 [TBL] [Abstract][Full Text] [Related]
4. Rainfall-Runoff modelling using SWAT and eight artificial intelligence models in the Murredu Watershed, India. Shekar PR; Mathew A; S AP; Gopi VP Environ Monit Assess; 2023 Aug; 195(9):1041. PubMed ID: 37589780 [TBL] [Abstract][Full Text] [Related]
5. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation. Khullar S; Singh N Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840 [TBL] [Abstract][Full Text] [Related]
6. Stepwise decomposition-integration-prediction framework for runoff forecasting considering boundary correction. Xu Z; Mo L; Zhou J; Fang W; Qin H Sci Total Environ; 2022 Dec; 851(Pt 2):158342. PubMed ID: 36037902 [TBL] [Abstract][Full Text] [Related]
7. Research on machine learning hybrid framework by coupling grid-based runoff generation model and runoff process vectorization for flood forecasting. Liu C; Xie T; Li W; Hu C; Jiang Y; Li R; Song Q J Environ Manage; 2024 Jul; 364():121466. PubMed ID: 38870784 [TBL] [Abstract][Full Text] [Related]
8. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models. Adeyinka DA; Muhajarine N BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817 [TBL] [Abstract][Full Text] [Related]
9. Ensemble streamflow forecasting based on variational mode decomposition and long short term memory. Sun X; Zhang H; Wang J; Shi C; Hua D; Li J Sci Rep; 2022 Jan; 12(1):518. PubMed ID: 35017569 [TBL] [Abstract][Full Text] [Related]
10. Application of a hybrid algorithm of LSTM and Transformer based on random search optimization for improving rainfall-runoff simulation. Li W; Liu C; Hu C; Niu C; Li R; Li M; Xu Y; Tian L Sci Rep; 2024 May; 14(1):11184. PubMed ID: 38755303 [TBL] [Abstract][Full Text] [Related]
11. Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Kouadri S; Pande CB; Panneerselvam B; Moharir KN; Elbeltagi A Environ Sci Pollut Res Int; 2022 Mar; 29(14):21067-21091. PubMed ID: 34748181 [TBL] [Abstract][Full Text] [Related]
12. Simulating daily PM Guo Q; He Z; Wang Z Chemosphere; 2023 Nov; 340():139886. PubMed ID: 37611770 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China. Li X; Zhang X Environ Sci Pollut Res Int; 2023 Nov; 30(55):117485-117502. PubMed ID: 37867169 [TBL] [Abstract][Full Text] [Related]
14. Comparative efficiency of the SWAT model and a deep learning model in estimating nitrate loads at the Tuckahoe creek watershed, Maryland. Lee J; Kim D; Hong S; Yun D; Kwon D; Hill RL; Gao F; Zhang X; Cho KH; Lee S; Pachepsky Y Sci Total Environ; 2024 Dec; 954():176256. PubMed ID: 39299317 [TBL] [Abstract][Full Text] [Related]
15. Hybrid WT-CNN-GRU-based model for the estimation of reservoir water quality variables considering spatio-temporal features. Zamani MG; Nikoo MR; Al-Rawas G; Nazari R; Rastad D; Gandomi AH J Environ Manage; 2024 May; 358():120756. PubMed ID: 38599080 [TBL] [Abstract][Full Text] [Related]
16. Use of one-dimensional CNN for input data size reduction in LSTM for improved computational efficiency and accuracy in hourly rainfall-runoff modeling. Ishida K; Ercan A; Nagasato T; Kiyama M; Amagasaki M J Environ Manage; 2024 May; 359():120931. PubMed ID: 38678895 [TBL] [Abstract][Full Text] [Related]
17. Runoff forecasting model based on variational mode decomposition and artificial neural networks. Jing X; Luo J; Zhang S; Wei N Math Biosci Eng; 2022 Jan; 19(2):1633-1648. PubMed ID: 35135221 [TBL] [Abstract][Full Text] [Related]
18. Design of Machine Learning Algorithm for Tourism Demand Prediction. Yu N; Chen J Comput Math Methods Med; 2022; 2022():6352381. PubMed ID: 35720035 [TBL] [Abstract][Full Text] [Related]
19. Application of Hybrid ANN Techniques for Drought Forecasting in the Semi-Arid Region of India. Wable PS; Jha MK; Adamala S; Tiwari MK; Biswal S Environ Monit Assess; 2023 Aug; 195(9):1090. PubMed ID: 37615733 [TBL] [Abstract][Full Text] [Related]
20. Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River watershed, U.S. Yuan L; Forshay KJ PLoS One; 2021; 16(4):e0248489. PubMed ID: 33844687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]