These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37164231)
1. Digestate-derived carbonized char and activated carbon: Application perspective. Wang W; Chang JS; Lee DJ Bioresour Technol; 2023 Aug; 381():129135. PubMed ID: 37164231 [TBL] [Abstract][Full Text] [Related]
2. Anaerobic digestate valorization beyond agricultural application: Current status and prospects. Wang W; Chang JS; Lee DJ Bioresour Technol; 2023 Apr; 373():128742. PubMed ID: 36791977 [TBL] [Abstract][Full Text] [Related]
3. Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept. Sharma HB; Panigrahi S; Sarmah AK; Dubey BK Sci Total Environ; 2020 Mar; 706():135907. PubMed ID: 31846879 [TBL] [Abstract][Full Text] [Related]
4. Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview. Cavali M; Libardi Junior N; Mohedano RA; Belli Filho P; da Costa RHR; de Castilhos Junior AB Sci Total Environ; 2022 May; 822():153614. PubMed ID: 35124030 [TBL] [Abstract][Full Text] [Related]
5. Valorization of anaerobic digestion digestate: A prospect review. Wang W; Lee DJ Bioresour Technol; 2021 Mar; 323():124626. PubMed ID: 33418353 [TBL] [Abstract][Full Text] [Related]
6. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation. Garlapalli RK; Wirth B; Reza MT Bioresour Technol; 2016 Nov; 220():168-174. PubMed ID: 27567477 [TBL] [Abstract][Full Text] [Related]
7. Hydrothermal-enhanced pyrolysis for efficient NO Shao M; Zhang C; Chen Q; Wu H; Dong Z; Bai X; Wang N; Xu Q Waste Manag; 2024 Jun; 183():112-122. PubMed ID: 38739988 [TBL] [Abstract][Full Text] [Related]
8. Thermophilic anaerobic digestion of cattail and hydrothermal carbonization of the digestate for co-production of biomethane and hydrochar. Zhang B; Joseph G; Wang L; Li X; Shahbazi A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(3):230-238. PubMed ID: 31653194 [TBL] [Abstract][Full Text] [Related]
9. From food waste and its digestate to nitrogen self-doped char and methane-rich syngas: Evolution of pyrolysis products during autogenic pressure carbonization. Peng W; Zhang H; Lü F; Shao L; He P J Hazard Mater; 2022 Feb; 424(Pt A):127249. PubMed ID: 34600375 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic digestion of sugarcane bagasse for biogas production and digestate valorization. Agarwal NK; Kumar M; Ghosh P; Kumar SS; Singh L; Vijay VK; Kumar V Chemosphere; 2022 May; 295():133893. PubMed ID: 35134407 [TBL] [Abstract][Full Text] [Related]
11. Sustainable management and recycling of food waste anaerobic digestate: A review. Dutta S; He M; Xiong X; Tsang DCW Bioresour Technol; 2021 Dec; 341():125915. PubMed ID: 34523582 [TBL] [Abstract][Full Text] [Related]
12. Process water recirculation for catalytic hydrothermal carbonization of anaerobic digestate: Water-Energy-Nutrient Nexus. He M; Cao Y; Xu Z; You S; Ruan R; Gao B; Wong KH; Tsang DCW Bioresour Technol; 2022 Oct; 361():127694. PubMed ID: 35905882 [TBL] [Abstract][Full Text] [Related]
13. Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment. Lee JTE; Ok YS; Song S; Dissanayake PD; Tian H; Tio ZK; Cui R; Lim EY; Jong MC; Hoy SH; Lum TQH; Tsui TH; Yoon CS; Dai Y; Wang CH; Tan HTW; Tong YW Bioresour Technol; 2021 Aug; 333():125190. PubMed ID: 33915456 [TBL] [Abstract][Full Text] [Related]
14. A comprehensive review on the preparation of biochar from digestate sources and its application in environmental pollution remediation. Fu Z; Zhao J; Guan D; Wang Y; Xie J; Zhang H; Sun Y; Zhu J; Guo L Sci Total Environ; 2024 Feb; 912():168822. PubMed ID: 38043821 [TBL] [Abstract][Full Text] [Related]
15. Coupling anaerobic digestion and pyrolysis processes for maximizing energy recovery and soil preservation according to the circular economy concept. Tayibi S; Monlau F; Marias F; Cazaudehore G; Fayoud NE; Oukarroum A; Zeroual Y; Barakat A J Environ Manage; 2021 Feb; 279():111632. PubMed ID: 33309111 [TBL] [Abstract][Full Text] [Related]
16. Life cycle assessment of a novel strategy based on hydrothermal carbonization for nutrient and energy recovery from food waste. Sarrion A; Medina-Martos E; Iribarren D; Diaz E; Mohedano AF; Dufour J Sci Total Environ; 2023 Jun; 878():163104. PubMed ID: 36972888 [TBL] [Abstract][Full Text] [Related]
17. Environmental implications, potential value, and future of food-waste anaerobic digestate management: A review. O'Connor J; Mickan BS; Rinklebe J; Song H; Siddique KHM; Wang H; Kirkham MB; Bolan NS J Environ Manage; 2022 Sep; 318():115519. PubMed ID: 35716555 [TBL] [Abstract][Full Text] [Related]
18. Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: Review. Singh R; Paritosh K; Pareek N; Vivekanand V Bioresour Technol; 2022 Sep; 360():127596. PubMed ID: 35809870 [TBL] [Abstract][Full Text] [Related]
19. Food waste and sewage sludge co-digestion amended with different biochars: VFA kinetics, methane yield and digestate quality assessment. Johnravindar D; Wong JWC; Chakraborty D; Bodedla G; Kaur G J Environ Manage; 2021 Jul; 290():112457. PubMed ID: 33895449 [TBL] [Abstract][Full Text] [Related]
20. Coconut husk biochar amendment enhances nutrient retention by suppressing nitrification in agricultural soil following anaerobic digestate application. Plaimart J; Acharya K; Mrozik W; Davenport RJ; Vinitnantharat S; Werner D Environ Pollut; 2021 Jan; 268(Pt A):115684. PubMed ID: 33010549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]