These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37164695)

  • 1. Genetic structure and population history of a peat swamp forest tree species, Shorea albida (Dipterocarpaceae), in Brunei Darussalam.
    Ogasahara M; Cobb AR; Sukri RS; Metali F; Kamiya K
    Genes Genet Syst; 2023 Jun; 98(1):35-44. PubMed ID: 37164695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-fire carbon dynamics in the tropical peat swamp forests of Brunei reveal long-term elevated CH
    Lupascu M; Akhtar H; Smith TEL; Sukri RS
    Glob Chang Biol; 2020 Sep; 26(9):5125-5145. PubMed ID: 32475055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinctive Tropical Forest Variants Have Unique Soil Microbial Communities, But Not Always Low Microbial Diversity.
    Tripathi BM; Song W; Slik JW; Sukri RS; Jaafar S; Dong K; Adams JM
    Front Microbiol; 2016; 7():376. PubMed ID: 27092105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term disturbance dynamics and resilience of tropical peat swamp forests.
    Cole LE; Bhagwat SA; Willis KJ
    J Ecol; 2015 Jan; 103(1):16-30. PubMed ID: 26120202
    [No Abstract]   [Full Text] [Related]  

  • 5. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings.
    Shuhada SN; Salim S; Nobilly F; Zubaid A; Azhar B
    Ecol Evol; 2017 Sep; 7(18):7187-7200. PubMed ID: 28944010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bornean peat swamp forest is a net source of carbon dioxide to the atmosphere.
    Tang ACI; Melling L; Stoy PC; Musin KK; Aeries EB; Waili JW; Shimizu M; Poulter B; Hirata R
    Glob Chang Biol; 2020 Dec; 26(12):6931-6944. PubMed ID: 32881141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First fossil-leaf floras from Brunei Darussalam show dipterocarp dominance in Borneo by the Pliocene.
    Wilf P; Zou X; Donovan MP; Kocsis L; Briguglio A; Shaw D; Slik JF; Lambiase JJ
    PeerJ; 2022; 10():e12949. PubMed ID: 35356469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia.
    Sakabe A; Itoh M; Hirano T; Kusin K
    Glob Chang Biol; 2018 Nov; 24(11):5123-5136. PubMed ID: 30175421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Community Structure in a Malaysian Tropical Peat Swamp Forest: The Influence of Tree Species and Depth.
    Too CC; Keller A; Sickel W; Lee SM; Yule CM
    Front Microbiol; 2018; 9():2859. PubMed ID: 30564202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mangrove and peat swamp forests: refuge habitats for primates and felids.
    Nowak K
    Folia Primatol (Basel); 2012; 83(3-6):361-76. PubMed ID: 23363595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys.
    Wedeux B; Dalponte M; Schlund M; Hagen S; Cochrane M; Graham L; Usup A; Thomas A; Coomes D
    Glob Chang Biol; 2020 Jul; 26(7):3947-3964. PubMed ID: 32267596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast communities of primary and secondary peat swamp forests in southern Thailand.
    Boonmak C; Khunnamwong P; Limtong S
    Antonie Van Leeuwenhoek; 2020 Jan; 113(1):55-69. PubMed ID: 31432290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of Hylobates agilis albibarbis in a logged peat-swamp forest: Sabangau catchment, Central Kalimantan.
    Buckley C; Nekaris KA; Husson SJ
    Primates; 2006 Oct; 47(4):327-35. PubMed ID: 16736263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of flowering tree density on the mating system and gene flow in Shorea leprosula (Dipterocarpaceae) in Peninsular Malaysia.
    Fukue Y; Kado T; Lee SL; Ng KK; Muhammad N; Tsumura Y
    J Plant Res; 2007 May; 120(3):413-20. PubMed ID: 17387430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vegetation correlates of gibbon density in the peat-swamp forest of the Sabangau catchment, Central Kalimantan, Indonesia.
    Hamard M; Cheyne SM; Nijman V
    Am J Primatol; 2010 Jun; 72(7):607-16. PubMed ID: 20186760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forest structure and support availability influence orangutan locomotion in Sumatra and Borneo.
    Manduell KL; Harrison ME; Thorpe SK
    Am J Primatol; 2012 Dec; 74(12):1128-42. PubMed ID: 22915011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Areas Highly Vulnerable to Land Conversion: A Case Study From Southern Thailand.
    Tantipisanuh N; Gale GA
    Environ Manage; 2022 Feb; 69(2):323-332. PubMed ID: 34850250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia.
    Dhandapani S; Ritz K; Evers S; Yule CM; Sjögersten S
    Sci Total Environ; 2019 Mar; 655():220-231. PubMed ID: 30471590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age, extent and carbon storage of the central Congo Basin peatland complex.
    Dargie GC; Lewis SL; Lawson IT; Mitchard ET; Page SE; Bocko YE; Ifo SA
    Nature; 2017 Feb; 542(7639):86-90. PubMed ID: 28077869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Land use conversion from peat swamp forest to oil palm agriculture greatly modifies microclimate and soil conditions.
    Anamulai S; Sanusi R; Zubaid A; Lechner AM; Ashton-Butt A; Azhar B
    PeerJ; 2019; 7():e7656. PubMed ID: 31632845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.