These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37164939)

  • 1. Extended Biosynthesis of Rhamnolipid by Immobilized Pseudomonas aeruginosa USM-AR2 Cells in a Fluidized Bed Bioreactor.
    Mohammed Zulkhifli NA; Solong DR; Mohd Yahya AR; Md Noh NA
    Lett Appl Microbiol; 2023 May; ():. PubMed ID: 37164939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of agitation on oil substrate dispersion and oxygen transfer in Pseudomonas aeruginosa USM-AR2 fermentation producing rhamnolipid in a stirred tank bioreactor.
    Nur Asshifa MN; Zambry NS; Salwa MS; Yahya ARM
    3 Biotech; 2017 Jul; 7(3):189. PubMed ID: 28664380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced rhamnolipid production by Pseudomonas aeruginosa USM-AR2 via fed-batch cultivation based on maximum substrate uptake rate.
    Noh NA; Salleh SM; Yahya AR
    Lett Appl Microbiol; 2014 Jun; 58(6):617-23. PubMed ID: 24698293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhamnolipid produced by Pseudomonas aeruginosa USM-AR2 facilitates crude oil distillation.
    Asshifa Md Noh N; Al-Ashraf Abdullah A; Nasir Mohamad Ibrahim M; Ramli Mohd Yahya A
    J Gen Appl Microbiol; 2012; 58(2):153-61. PubMed ID: 22688247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhamnolipid production by Pseudomonas aeruginosa immobilised in polyvinyl alcohol beads.
    Jeong HS; Lim DJ; Hwang SH; Ha SD; Kong JY
    Biotechnol Lett; 2004 Jan; 26(1):35-9. PubMed ID: 15005149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of waste cooking oil and simultaneous production of rhamnolipid biosurfactant by Pseudomonas aeruginosa P7815 in batch and fed-batch bioreactor.
    Sharma S; Verma R; Dhull S; Maiti SK; Pandey LM
    Bioprocess Biosyst Eng; 2022 Feb; 45(2):309-319. PubMed ID: 34767073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of Waste Cooking Oil to Rhamnolipid by a Newly Oleophylic
    Shi S; Teng Z; Liu J; Li T
    Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of Agro-Industry Residue for Rhamnolipid Production by P. aeruginosa AMB AS7 and Its Application in Chromium Removal.
    Samykannu M; Achary A
    Appl Biochem Biotechnol; 2017 Sep; 183(1):70-90. PubMed ID: 28161866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and Production of Rhamnolipid from
    Haloi S; Medhi T
    Indian J Microbiol; 2022 Sep; 62(3):434-440. PubMed ID: 35974913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes.
    Aneez Ahamad PY; Mohammad Kunhi AA
    Biodegradation; 2011 Apr; 22(2):253-65. PubMed ID: 20658308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotechnological production of xylitol in a three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads.
    Fouad Sarrouh B; Tresinari Dos Santos D; Silvério da Silva S
    Biotechnol J; 2007 Jun; 2(6):759-63. PubMed ID: 17427994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control.
    Bazsefidpar S; Mokhtarani B; Panahi R; Hajfarajollah H
    Biodegradation; 2019 Feb; 30(1):59-69. PubMed ID: 30600422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of lactic acid production by immobilized Lactococcus lactis IO-1.
    Sirisansaneeyakul S; Luangpipat T; Vanichsriratana W; Srinophakun T; Chen HH; Chisti Y
    J Ind Microbiol Biotechnol; 2007 May; 34(5):381-91. PubMed ID: 17318489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems.
    Müller MM; Hörmann B; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):167-74. PubMed ID: 20217074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated-batch xylitol bioproduction using yeast cells entrapped in polyvinyl alcohol-hydrogel.
    Cunha MA; Rodrigues RC; Santos JC; Converti A; da Silva SS
    Curr Microbiol; 2007 Feb; 54(2):91-6. PubMed ID: 17211545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2.
    Chen SY; Wei YH; Chang JS
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):67-74. PubMed ID: 17457541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D.
    George S; Jayachandran K
    J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Cell-Surface Modification for Optimized Foam Fractionation.
    Blesken CC; Bator I; Eberlein C; Heipieper HJ; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2020; 8():572892. PubMed ID: 33195133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone.
    Ozdal M; Gurkok S; Ozdal OG
    3 Biotech; 2017 Jun; 7(2):117. PubMed ID: 28567629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.