These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37164939)

  • 21. Biosurfactant production by Pseudomonas aeruginosa BN10 cells entrapped in cryogels.
    Christova N; Petrov P; Kabaivanova L
    Z Naturforsch C J Biosci; 2013; 68(1-2):47-52. PubMed ID: 23659172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.
    Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M
    Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization and scale-up of the production of rhamnolipid by Pseudomonas aeruginosa in solid-state fermentation using high-density polyurethane foam as an inert support.
    Gong Z; He Q; Che C; Liu J; Yang G
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):385-392. PubMed ID: 31724063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa.
    Heyd M; Franzreb M; Berensmeier S
    Biotechnol Prog; 2011; 27(3):706-16. PubMed ID: 21567991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.
    Zhao F; Shi R; Zhao J; Li G; Bai X; Han S; Zhang Y
    J Appl Microbiol; 2015 Feb; 118(2):379-89. PubMed ID: 25410277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.
    Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J
    World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PVA-hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate.
    da Cunha MA; Converti A; Santos JC; Ferreira ST; da Silva SS
    Appl Biochem Biotechnol; 2009 Jun; 157(3):527-37. PubMed ID: 18633733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production and Characterization of Rhamnolipids Produced by
    Maťátková O; Michailidu J; Ježdík R; Jarošová Kolouchová I; Řezanka T; Jirků V; Masák J
    Microorganisms; 2022 Jun; 10(7):. PubMed ID: 35888990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene.
    Kahraman H; Erenler SO
    Prikl Biokhim Mikrobiol; 2012; 48(2):212-7. PubMed ID: 22586915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of arabitol from glycerol by immobilized cells of
    Ranieri R; Candeliere F; Sola L; Leonardi A; Rossi M; Amaretti A; Raimondi S
    Front Bioeng Biotechnol; 2024; 12():1375937. PubMed ID: 38659644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874.
    Müller MM; Hörmann B; Kugel M; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):585-92. PubMed ID: 20890599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of waste canola oil as a low-cost substrate for rhamnolipid production using Pseudomonas aeruginosa.
    Pérez-Armendáriz B; Cal-Y-Mayor-Luna C; El-Kassis EG; Ortega-Martínez LD
    AMB Express; 2019 May; 9(1):61. PubMed ID: 31062183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell Culture conditions determine the enhancement of specific monoclonal antibody productivity of calcium alginate-entrapped S3H5/gamma2bA2 hybridoma cells.
    Lee GM; Chuck AS; Palsson BO
    Biotechnol Bioeng; 1993 Feb; 41(3):330-40. PubMed ID: 18609557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrodynamic characteristics of immobilized cell beads in a liquid-solid fluidized-bed bioreactor.
    Wu JY; Chen KC; Chen CT; Hwang SC
    Biotechnol Bioeng; 2003 Sep; 83(5):583-94. PubMed ID: 12827700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the structural composition and surface properties of rhamnolipid mixtures produced by Pseudomonas aeruginosa UFPEDA 614 in different cultivation periods.
    de Santana-Filho AP; Camilios-Neto D; de Souza LM; Sassaki GL; Mitchell DA; Krieger N
    Appl Biochem Biotechnol; 2015 Jan; 175(2):988-95. PubMed ID: 25351631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: solid-state fermentation, water extraction, medium optimization and potential applications.
    Zhao F; Zheng M; Xu X
    Bioresour Technol; 2023 Feb; 369():128426. PubMed ID: 36462764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell immobilization using PVA crosslinked with boric acid.
    Wu KY; Wisecarver KD
    Biotechnol Bioeng; 1992 Feb; 39(4):447-9. PubMed ID: 18600966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into LentiKats.
    Rebros M; Rosenberg M; Stloukal R; Kristofíková L
    Lett Appl Microbiol; 2005; 41(5):412-6. PubMed ID: 16238644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability.
    Noordman WH; Wachter JH; de Boer GJ; Janssen DB
    J Biotechnol; 2002 Mar; 94(2):195-212. PubMed ID: 11796172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.