These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37165109)

  • 41. Using 1-propanol to significantly enhance the production of valuable odd-chain fatty acids by Rhodococcus opacus PD630.
    Zhang LS; Xu P; Chu MY; Zong MH; Yang JG; Lou WY
    World J Microbiol Biotechnol; 2019 Oct; 35(11):164. PubMed ID: 31637528
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale.
    Voss I; Steinbüchel A
    Appl Microbiol Biotechnol; 2001 May; 55(5):547-55. PubMed ID: 11414319
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630.
    Alvarez HM; Luftmann H; Silva RA; Cesari AC; Viale A; Wältermann M; Steinbüchel A
    Microbiology (Reading); 2002 May; 148(Pt 5):1407-12. PubMed ID: 11988514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exposure to metal nanoparticles changes zeta potentials of
    Kuyukina MS; Makarova MV; Pistsova ON; Glebov GG; Osipenko MA; Ivshina IB
    Heliyon; 2022 Nov; 8(11):e11632. PubMed ID: 36419660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro effects of sterculic acid on lipid biosynthesis in Rhodococcus opacus strain PD630 and isolation of mutants defective in fatty acid desaturation.
    Wältermann M; Steinbüchel A
    FEMS Microbiol Lett; 2000 Sep; 190(1):45-50. PubMed ID: 10981688
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomass and lipid production by Rhodococcus opacus PD630 in molasses-based media with and without osmotic-stress.
    Saisriyoot M; Thanapimmetha A; Suwaleerat T; Chisti Y; Srinophakun P
    J Biotechnol; 2019 May; 297():1-8. PubMed ID: 30853637
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.
    Yoneda A; Henson WR; Goldner NK; Park KJ; Forsberg KJ; Kim SJ; Pesesky MW; Foston M; Dantas G; Moon TS
    Nucleic Acids Res; 2016 Mar; 44(5):2240-54. PubMed ID: 26837573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis.
    Gomes T; Pereira CG; Cardoso C; Sousa VS; Teixeira MR; Pinheiro JP; Bebianno MJ
    Mar Environ Res; 2014 Oct; 101():208-214. PubMed ID: 25066339
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630.
    Hetzler S; Steinbüchel A
    Appl Environ Microbiol; 2013 May; 79(9):3122-5. PubMed ID: 23435878
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630.
    DeLorenzo DM; Rottinghaus AG; Henson WR; Moon TS
    ACS Synth Biol; 2018 Feb; 7(2):727-738. PubMed ID: 29366319
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel waste-derived biochar from biomass gasification effluent: preparation, characterization, cost estimation, and application in polycyclic aromatic hydrocarbon biodegradation and lipid accumulation by Rhodococcus opacus.
    Goswami L; Manikandan NA; Taube JCR; Pakshirajan K; Pugazhenthi G
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):25154-25166. PubMed ID: 31256397
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering of a xylose metabolic pathway in Rhodococcus strains.
    Xiong X; Wang X; Chen S
    Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of added value bacterial lipids through valorisation of hydrocarbon-contaminated cork waste.
    Castro AR; Guimarães M; Oliveira JV; Pereira MA
    Sci Total Environ; 2017 Dec; 605-606():677-682. PubMed ID: 28675877
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of a Novel Tectivirus Phage Toil and Its Potential as an Agent for Biolipid Extraction.
    Gill JJ; Wang B; Sestak E; Young R; Chu KH
    Sci Rep; 2018 Jan; 8(1):1062. PubMed ID: 29348539
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lignocellulose-derived inhibitors improve lipid extraction from wet Rhodococcus opacus cells.
    Kurosawa K; Anthony Debono C; Sinskey AJ
    Bioresour Technol; 2015 Oct; 193():206-12. PubMed ID: 26141279
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increased triacylglycerol production in Rhodococcus opacus by overexpressing transcriptional regulators.
    Anthony WE; Geng W; Diao J; Carr RR; Wang B; Ning J; Moon TS; Dantas G; Zhang F
    Biotechnol Biofuels Bioprod; 2024 Jun; 17(1):83. PubMed ID: 38898475
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Construction of Genetic Logic Gates Based on the T7 RNA Polymerase Expression System in
    DeLorenzo DM; Moon TS
    ACS Synth Biol; 2019 Aug; 8(8):1921-1930. PubMed ID: 31362487
    [No Abstract]   [Full Text] [Related]  

  • 58. Increasing lipid production using an NADP
    Hernández MA; Alvarez HM
    Microbiology (Reading); 2019 Jan; 165(1):4-14. PubMed ID: 30372408
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis.
    Gonzalez-Estrella J; Puyol D; Sierra-Alvarez R; Field JA
    J Hazard Mater; 2015; 283():755-63. PubMed ID: 25464319
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells.
    Pujalté I; Passagne I; Brouillaud B; Tréguer M; Durand E; Ohayon-Courtès C; L'Azou B
    Part Fibre Toxicol; 2011 Mar; 8():10. PubMed ID: 21371295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.