BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37165211)

  • 1. Finite-Element Modelling Based on Optical Coherence Tomography and Corresponding X-ray MicroCT Data for Three Human Middle Ears.
    Golabbakhsh M; Wang X; MacDougall D; Farrell J; Landry T; Funnell WRJ; Adamson R
    J Assoc Res Otolaryngol; 2023 Jun; 24(3):339-363. PubMed ID: 37165211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of middle ear structure and function with optical coherence tomography.
    Meenderink SWF; Warn M; Anchondo LM; Liu Y; Jung TTK; Dong W
    Acta Otolaryngol; 2023; 143(7):558-562. PubMed ID: 37366291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of simulated data to explore the application of optical coherence tomography for classifying middle-ear pathologies.
    Golabbakhsh M; Funnell WRJ
    J Acoust Soc Am; 2023 Nov; 154(5):2790-2799. PubMed ID: 37916864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D finite element model of the chinchilla ear for characterizing middle ear functions.
    Wang X; Gan RZ
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1263-77. PubMed ID: 26785845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of model definitions and parameter values in finite element modeling of human middle ear mechanics.
    De Greef D; Pires F; Dirckx JJ
    Hear Res; 2017 Feb; 344():195-206. PubMed ID: 27915026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model.
    O'Connor KN; Cai H; Puria S
    J Acoust Soc Am; 2017 Nov; 142(5):2836. PubMed ID: 29195482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry.
    Subhash HM; Nguyen-Huynh A; Wang RK; Jacques SL; Choudhury N; Nuttall AL
    J Biomed Opt; 2012 Jun; 17(6):060505. PubMed ID: 22734728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography.
    Burkhardt A; Kirsten L; Bornitz M; Zahnert T; Koch E
    J Biophotonics; 2014 Jun; 7(6):434-41. PubMed ID: 23225692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid.
    Zhang X; Guan X; Nakmali D; Palan V; Pineda M; Gan RZ
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):867-81. PubMed ID: 25106467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single-ossicle ear: Acoustic response and mechanical properties measured in duck.
    Muyshondt PGG; Soons JAM; De Greef D; Pires F; Aerts P; Dirckx JJJ
    Hear Res; 2016 Oct; 340():35-42. PubMed ID: 26723104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review.
    Tan HEI; Santa Maria PL; Wijesinghe P; Francis Kennedy B; Allardyce BJ; Eikelboom RH; Atlas MD; Dilley RJ
    Otolaryngol Head Neck Surg; 2018 Sep; 159(3):424-438. PubMed ID: 29787354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on the effect of ligament and tendon detachment on human middle ear sound transfer using mathematic model.
    Xie P; Peng Y; Hu J; Yi S
    Proc Inst Mech Eng H; 2019 Aug; 233(8):784-792. PubMed ID: 31165672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of fixation of superior mallear ligament and anterior mallear ligament on the middle ear transfer function-finite element modeling].
    Huang H; Wang J
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Dec; 30(24):1935-1939. PubMed ID: 29798268
    [No Abstract]   [Full Text] [Related]  

  • 14. Inaccuracies of deterministic finite-element models of human middle ear revealed by stochastic modelling.
    Ebrahimian A; Mohammadi H; Rosowski JJ; Cheng JT; Maftoon N
    Sci Rep; 2023 May; 13(1):7329. PubMed ID: 37147426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical coherence tomography for the diagnosis and evaluation of human otitis media.
    Cho NH; Lee SH; Jung W; Jang JH; Kim J
    J Korean Med Sci; 2015 Mar; 30(3):328-35. PubMed ID: 25729258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling.
    Dai C; Cheng T; Wood MW; Gan RZ
    Hear Res; 2007 Aug; 230(1-2):24-33. PubMed ID: 17517484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.
    Lee CF; Chen PR; Lee WJ; Chen JH; Liu TC
    Laryngoscope; 2006 May; 116(5):711-6. PubMed ID: 16652076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human middle-ear muscle pulls change tympanic-membrane shape and low-frequency middle-ear transmission magnitudes and delays.
    Cho NH; Ravicz ME; Puria S
    Hear Res; 2023 Mar; 430():108721. PubMed ID: 36821982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time imaging of in-vitro human middle ear using high frequency ultrasound.
    Landry TG; Rainsbury JW; Adamson RB; Bance ML; Brown JA
    Hear Res; 2015 Aug; 326():1-7. PubMed ID: 25818516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.
    Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF
    Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.