BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37165258)

  • 1. Porous Materials for Atmospheric Water Harvesting.
    Zhang S; Fu J; Xing G; Zhu W; Ben T
    ChemistryOpen; 2023 May; 12(5):e202300046. PubMed ID: 37165258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption-Based Atmospheric Water Harvesting: Impact of Material and Component Properties on System-Level Performance.
    LaPotin A; Kim H; Rao SR; Wang EN
    Acc Chem Res; 2019 Jun; 52(6):1588-1597. PubMed ID: 31090396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistically Enabling Fast-Cycling and High-Yield Atmospheric Water Harvesting with Plasma-Treated Magnetic Flower-Like Porous Carbons.
    Ying Y; Yang G; Tao Y; Wu Q; Li H
    Adv Sci (Weinh); 2023 Jan; 10(3):e2204840. PubMed ID: 36424187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LiCl
    Guo S; Hu Y; Fang Z; Yao B; Peng X
    RSC Adv; 2024 May; 14(22):15619-15626. PubMed ID: 38746833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a better understanding of atmospheric water harvesting (AWH) technology.
    Wang M; Liu E; Jin T; Zafar SU; Mei X; Fauconnier ML; De Clerck C
    Water Res; 2024 Feb; 250():121052. PubMed ID: 38171174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystalline Porous Organic Salt for Ultrarapid Adsorption/Desorption-Based Atmospheric Water Harvesting by Dual Hydrogen Bond System.
    Zhang S; Fu J; Das S; Ye K; Zhu W; Ben T
    Angew Chem Int Ed Engl; 2022 Oct; 61(40):e202208660. PubMed ID: 35980118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives.
    Lu H; Shi W; Guo Y; Guan W; Lei C; Yu G
    Adv Mater; 2022 Mar; 34(12):e2110079. PubMed ID: 35122451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca-MOF-Derived Porous Sorbents for High-Yield Solar-Driven Atmosphere Water Harvesting.
    Hu Y; Wang Y; Fang Z; Yao B; Ye Z; Peng X
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):44942-44952. PubMed ID: 37703912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid solar-driven atmospheric water-harvesting with MAF-4-derived nitrogen-doped nanoporous carbon.
    Feng JH; Lu F; Chen Z; Jia MM; Chen YL; Lin WH; Wu QY; Li Y; Xue M; Chen XM
    Chem Sci; 2024 Jun; 15(25):9557-9565. PubMed ID: 38939138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An atmospheric water harvesting system based on the "Optimal Harvesting Window" design for worldwide water production.
    Li Q; Shao Z; Zou Q; Pan Q; Zhao Y; Feng Y; Wang W; Wang R; Ge T
    Sci Bull (Beijing); 2024 May; 69(10):1437-1447. PubMed ID: 38531718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipid Bilayer Inspired Sandwich Structural Nanofibrous Membrane for Atmospheric Water Harvesting and Selective Release.
    Yu Z; Li S; Zhang J; Tang C; Qin Z; Liu X; Zhou Z; Lai Y; Fu S
    Nano Lett; 2024 Feb; 24(8):2629-2636. PubMed ID: 38349527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt Confined in MIL-101(Cr)-Tailoring the Composite Sorbents for Efficient Atmospheric Water Harvesting.
    Solovyeva MV; Krivosheeva IV; Gordeeva LG; Khudozhitkov AE; Kolokolov DI; Stepanov AG; Ludwig R
    ChemSusChem; 2023 Sep; 16(18):e202300520. PubMed ID: 37272258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels.
    Song Y; Xu N; Liu G; Qi H; Zhao W; Zhu B; Zhou L; Zhu J
    Nat Nanotechnol; 2022 Aug; 17(8):857-863. PubMed ID: 35618801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reply to the Correspondence on "Crystalline Porous Organic Salt for Ultrarapid Adsorption/Desorption-Based Atmospheric Water Harvesting by Dual Hydrogen Bond System".
    Xing G; Zhang S; Zhu W; Ben T
    Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202215074. PubMed ID: 36658744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Property Relationships of Hydrogel-based Atmospheric Water Harvesting Systems.
    Feng A; Shi Y; Onggowarsito C; Zhang XS; Mao S; Johir MAH; Fu Q; Nghiem LD
    ChemSusChem; 2024 Jun; 17(11):e202301905. PubMed ID: 38268017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential Water Sorption/Desorption of a Nonporous Adaptive Organic Ligand Bridged Coordination Polymer for Atmospheric Moisture Harvesting.
    Meng L; Lan JH; Huang ZW; Liu Y; Hu KQ; Yuan LY; Wang XP; Chai ZF; Mei L; Shi WQ
    Chemistry; 2023 Sep; 29(54):e202301929. PubMed ID: 37429820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric Water Harvesting by Large-Scale Radiative Cooling Cellulose-Based Fabric.
    Zhang Y; Zhu W; Zhang C; Peoples J; Li X; Felicelli AL; Shan X; Warsinger DM; Borca-Tasciuc T; Ruan X; Li T
    Nano Lett; 2022 Apr; 22(7):2618-2626. PubMed ID: 35364813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable Hierarchical-Pored PAAS-PNIPAAm Hydrogel with Core-Shell Structure Tailored for Highly Efficient Atmospheric Water Harvesting.
    Zhang Z; Wang Y; Li Z; Fu H; Huang J; Xu Z; Lai Y; Qian X; Zhang S
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55295-55306. PubMed ID: 36454694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divide and Conquer: A Novel Dual-Layered Hydrogel for Atmospheric Moisture Harvesting.
    Feng A; Onggowarsito C; Mao S; Qiao GG; Fu Q
    ChemSusChem; 2023 Jul; 16(14):e202300137. PubMed ID: 37019848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting.
    Lei C; Guo Y; Guan W; Lu H; Shi W; Yu G
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202200271. PubMed ID: 35089612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.