These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37165258)

  • 21. Nitrogen-rich porous adsorbents for CO2 capture and storage.
    Li PZ; Zhao Y
    Chem Asian J; 2013 Aug; 8(8):1680-91. PubMed ID: 23744799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sandwich-Structured Carbon Paper/Metal-Organic Framework Monoliths for Flexible Solar-Powered Atmospheric Water Harvesting On Demand.
    Tao Y; Wu Q; Huang C; Su W; Ying Y; Zhu D; Li H
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10966-10975. PubMed ID: 35179350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unraveling a Stable 16-Ring Aluminophosphate DNL-11 through Three-Dimensional Electron Diffraction for Atmospheric Water Harvesting.
    Nie C; Yan N; Liao C; Ma C; Liu X; Wang J; Li G; Guo P; Liu Z
    J Am Chem Soc; 2024 Apr; 146(15):10257-10262. PubMed ID: 38578111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viability of a practical multicyclic sorption-based water harvester with improved water yield.
    Wang W; Pan Q; Xing Z; Liu X; Dai Y; Wang R; Ge T
    Water Res; 2022 Mar; 211():118029. PubMed ID: 35030362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Obtaining Water from Air Using Porous Metal-Organic Frameworks (MOFs).
    Mohan B; Kumar S; Chen Q
    Top Curr Chem (Cham); 2022 Oct; 380(6):54. PubMed ID: 36269450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tailoring the Desorption Behavior of Hygroscopic Gels for Atmospheric Water Harvesting in Arid Climates.
    Lu H; Shi W; Zhang JH; Chen AC; Guan W; Lei C; Greer JR; Boriskina SV; Yu G
    Adv Mater; 2022 Sep; 34(37):e2205344. PubMed ID: 35901232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 2D Covalent Organic Framework for Water Harvesting with Fast Kinetics and Low Regeneration Temperature.
    Sun C; Zhu Y; Shao P; Chen L; Huang X; Zhao S; Ma D; Jing X; Wang B; Feng X
    Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202217103. PubMed ID: 36640156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of 1H NMR spectroscopy method for determination of characteristics of thin layers of water adsorbed on the surface of dispersed and porous adsorbents.
    Turov VV; Leboda R
    Adv Colloid Interface Sci; 1999 Feb; 79(2-3):173-211. PubMed ID: 10696259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hygroscopic Porous Polymer for Sorption-Based Atmospheric Water Harvesting.
    Deng F; Chen Z; Wang C; Xiang C; Poredoš P; Wang R
    Adv Sci (Weinh); 2022 Nov; 9(33):e2204724. PubMed ID: 36209387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sorbents for Atmospheric Water Harvesting: From Design Principles to Applications.
    Shi W; Guan W; Lei C; Yu G
    Angew Chem Int Ed Engl; 2022 Oct; 61(43):e202211267. PubMed ID: 35960199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents--a review.
    Du Z; Deng S; Bei Y; Huang Q; Wang B; Huang J; Yu G
    J Hazard Mater; 2014 Jun; 274():443-54. PubMed ID: 24813664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced adsorption-based atmospheric water harvesting using a photothermal cotton rod for freshwater production in cold climates.
    Zhang W; Xia Y; Wen Z; Han W; Wang S; Cao Y; He RX; Liu Y; Chen B
    RSC Adv; 2021 Oct; 11(56):35695-35702. PubMed ID: 35493142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Harvesting Energy from Atmospheric Water: Grand Challenges in Continuous Electricity Generation.
    Tan J; Wang X; Chu W; Fang S; Zheng C; Xue M; Wang X; Hu T; Guo W
    Adv Mater; 2024 Mar; 36(12):e2211165. PubMed ID: 36708103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macroporous Hydrogel for High-Performance Atmospheric Water Harvesting.
    Lyu T; Wang Z; Liu R; Chen K; Liu H; Tian Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32433-32443. PubMed ID: 35803257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An overview of atmospheric water harvesting methods, the inevitable path of the future in water supply.
    Ahrestani Z; Sadeghzadeh S; Motejadded Emrooz HB
    RSC Adv; 2023 Mar; 13(15):10273-10307. PubMed ID: 37034449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathways to Energy-efficient Water Production from the Atmosphere.
    Feng Y; Wang R; Ge T
    Adv Sci (Weinh); 2022 Dec; 9(36):e2204508. PubMed ID: 36285671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Porous Covalent Organic Framework with Voided Square Grid Topology for Atmospheric Water Harvesting.
    Nguyen HL; Hanikel N; Lyle SJ; Zhu C; Proserpio DM; Yaghi OM
    J Am Chem Soc; 2020 Feb; 142(5):2218-2221. PubMed ID: 31944678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of a Compact Multicyclic High-Performance Atmospheric Water Harvester for Arid Environments.
    Li X; El Fil B; Li B; Graeber G; Li AC; Zhong Y; Alshrah M; Wilson CT; Lin E
    ACS Energy Lett; 2024 Jul; 9(7):3391-3399. PubMed ID: 39022669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advanced Material Design and Engineering for Water-Based Evaporative Cooling.
    Li R; Wang W; Shi Y; Wang CT; Wang P
    Adv Mater; 2024 Mar; 36(12):e2209460. PubMed ID: 36638501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemistries and materials for atmospheric water harvesting.
    Lei C; Guan W; Zhao Y; Yu G
    Chem Soc Rev; 2024 Jul; 53(14):7328-7362. PubMed ID: 38896434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.