These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 37165319)
1. Effects of differentially expressed microRNAs induced by rootstocks and silicon on improving chilling tolerance of cucumber seedlings (Cucumis sativus L.). Ma Q; Niu C; Wang C; Chen C; Li Y; Wei M BMC Genomics; 2023 May; 24(1):250. PubMed ID: 37165319 [TBL] [Abstract][Full Text] [Related]
2. [Effects of environmental conditions on absorption and distribution of silicon and formation of bloom on fruit surface of cucumber]. Zhou X; Feng GL; Li ZH; Liu SX; Zhao S; Li Y; Wei M Ying Yong Sheng Tai Xue Bao; 2020 Feb; 31(2):501-507. PubMed ID: 32476343 [TBL] [Abstract][Full Text] [Related]
3. [Physiological responses of cucumber seedlings grafted on different salt-tolerant rootstocks to NaCI stress]. Xue-Mei T; Min W; Qing L; Chuan-Qian D; Xiu-Feng W; Qing-Hua S; Feng-Juan Y Ying Yong Sheng Tai Xue Bao; 2012 Jan; 23(1):147-53. PubMed ID: 22489492 [TBL] [Abstract][Full Text] [Related]
4. The sub/supra-optimal temperature-induced inhibition of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto figleaf gourd/luffa rootstocks. Li H; Wang F; Chen XJ; Shi K; Xia XJ; Considine MJ; Yu JQ; Zhou YH Physiol Plant; 2014 Nov; 152(3):571-84. PubMed ID: 24735050 [TBL] [Abstract][Full Text] [Related]
5. Identification of microRNAs associated with the exogenous spermidine-mediated improvement of high-temperature tolerance in cucumber seedlings (Cucumis sativus L.). Wang Y; Guo S; Wang L; Wang L; He X; Shu S; Sun J; Lu N BMC Genomics; 2018 Apr; 19(1):285. PubMed ID: 29690862 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome and Physiological Analysis of Rootstock Types and Silicon Affecting Cold Tolerance of Cucumber Seedlings. Luan H; Niu C; Nie X; Li Y; Wei M Plants (Basel); 2022 Feb; 11(3):. PubMed ID: 35161426 [TBL] [Abstract][Full Text] [Related]
7. Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots. Lee SH; Ahn SJ; Im YJ; Cho K; Chung GC; Cho BH; Han O Biochem Biophys Res Commun; 2005 May; 330(4):1194-8. PubMed ID: 15823569 [TBL] [Abstract][Full Text] [Related]
8. H Lv C; Li F; Ai X; Bi H Plant Cell Rep; 2022 Apr; 41(4):1115-1130. PubMed ID: 35260922 [TBL] [Abstract][Full Text] [Related]
9. WRKY41/WRKY46-miR396b-5p-TPR module mediates abscisic acid-induced cold tolerance of grafted cucumber seedlings. Sun J; Chen J; Si X; Liu W; Yuan M; Guo S; Wang Y Front Plant Sci; 2022; 13():1012439. PubMed ID: 36160963 [TBL] [Abstract][Full Text] [Related]
10. Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling-tolerant figleaf gourd. Lee SH; Chung GC; Steudle E J Exp Bot; 2005 Mar; 56(413):985-95. PubMed ID: 15734792 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcriptome analysis of grafting to improve chilling tolerance of cucumber. Fu X; Lv CY; Zhang YY; Ai XZ; Bi HG Protoplasma; 2023 Sep; 260(5):1349-1364. PubMed ID: 36949344 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome Analysis Reveals the Different Response to Toxic Stress in Rootstock Grafted and Non-Grafted Cucumber Seedlings. Xiao X; Lv J; Xie J; Feng Z; Ma N; Li J; Yu J; Calderón-Urrea A Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991638 [TBL] [Abstract][Full Text] [Related]
13. Integrated Metabolome and Transcriptome Analysis Provide Insights into the Effects of Grafting on Fruit Flavor of Cucumber with Different Rootstocks. Miao L; Di Q; Sun T; Li Y; Duan Y; Wang J; Yan Y; He C; Wang C; Yu X Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31340498 [TBL] [Abstract][Full Text] [Related]
15. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level. Li C; Li Y; Bai L; Zhang T; He C; Yan Y; Yu X Physiol Plant; 2014 Aug; 151(4):406-22. PubMed ID: 24279842 [TBL] [Abstract][Full Text] [Related]
16. Proteomics analysis of compatibility and incompatibility in grafted cucumber seedlings. Xu Q; Guo SR; Li L; An YH; Shu S; Sun J Plant Physiol Biochem; 2016 Aug; 105():21-28. PubMed ID: 27070289 [TBL] [Abstract][Full Text] [Related]
17. γ-aminobutyric acid contributes to a novel long-distance signaling in figleaf gourd rootstock-induced cold tolerance of grafted cucumber seedlings. Qin Y; Dong X; Dong H; Wang X; Ye T; Wang Q; Duan J; Yu M; Zhang T; Du N; Shen S; Piao F; Guo Z Plant Physiol Biochem; 2024 Nov; 216():109168. PubMed ID: 39366198 [TBL] [Abstract][Full Text] [Related]
18. Chill-induced decrease in capacity of RuBP carboxylation and associated H2O2 accumulation in cucumber leaves are alleviated by grafting onto figleaf gourd. Zhou Y; Huang L; Zhang Y; Shi K; Yu J; Nogués S Ann Bot; 2007 Oct; 100(4):839-48. PubMed ID: 17761689 [TBL] [Abstract][Full Text] [Related]
19. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Dong CJ; Li L; Shang QM; Liu XY; Zhang ZG Planta; 2014 Oct; 240(4):687-700. PubMed ID: 25034826 [TBL] [Abstract][Full Text] [Related]
20. Salicylic Acid Is Involved in Rootstock-Scion Communication in Improving the Chilling Tolerance of Grafted Cucumber. Fu X; Feng YQ; Zhang XW; Zhang YY; Bi HG; Ai XZ Front Plant Sci; 2021; 12():693344. PubMed ID: 34249065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]