These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37165486)

  • 1. Green-derived carbon dots: A potent tool for biosensing in food safety.
    Xu Q; Xiao F; Xu H
    Crit Rev Food Sci Nutr; 2024; 64(25):9095-9112. PubMed ID: 37165486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile and green synthesis of fluorescent carbon dots with tunable emission for sensors and cells imaging.
    Diao H; Li T; Zhang R; Kang Y; Liu W; Cui Y; Wei S; Wang N; Li L; Wang H; Niu W; Sun T
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jul; 200():226-234. PubMed ID: 29689513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review on carbon dots in food safety applications.
    Shi X; Wei W; Fu Z; Gao W; Zhang C; Zhao Q; Deng F; Lu X
    Talanta; 2019 Mar; 194():809-821. PubMed ID: 30609610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dots-based fluorescent probe for detection of foodborne pathogens and its potential with microfluidics.
    Ma G; Li X; Cai J; Wang X
    Food Chem; 2024 Sep; 451():139385. PubMed ID: 38663242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli.
    Wang N; Wang Y; Guo T; Yang T; Chen M; Wang J
    Biosens Bioelectron; 2016 Nov; 85():68-75. PubMed ID: 27155118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portable sensing methods based on carbon dots for food analysis.
    Wang M; Wang L; Hou A; Hong M; Li C; Yue Q
    J Food Sci; 2024 Jul; 89(7):3935-3949. PubMed ID: 38865253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon dots based ratiometric fluorescent sensing platform for food safety.
    Han Y; Yang W; Luo X; He X; Zhao H; Tang W; Yue T; Li Z
    Crit Rev Food Sci Nutr; 2022; 62(1):244-260. PubMed ID: 32876496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Progress of Ratiometric Fluorescence Sensors Based on Carbon Dots in Foodborne Contaminant Detection.
    Zhang J; Chen H; Xu K; Deng D; Zhang Q; Luo L
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36831999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomass-derived carbon dots as emerging visual platforms for fluorescent sensing.
    Yuan L; Shao C; Zhang Q; Webb E; Zhao X; Lu S
    Environ Res; 2024 Jun; 251(Pt 1):118610. PubMed ID: 38442811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant Part-Derived Carbon Dots for Biosensing.
    Zulfajri M; Abdelhamid HN; Sudewi S; Dayalan S; Rasool A; Habib A; Huang GG
    Biosensors (Basel); 2020 Jun; 10(6):. PubMed ID: 32560540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrothermal green synthesis of magnetic Fe
    Ahmadian-Fard-Fini S; Salavati-Niasari M; Ghanbari D
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():481-493. PubMed ID: 29898431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research Progress in the Synthesis of Carbon Dots and Their Application in Food Analysis.
    Yu Y; Zhang L; Gao X; Feng Y; Wang H; Lei C; Yan Y; Liu S
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on green synthesis, biological applications of carbon dots in the field of drug delivery, biosensors, and bioimaging.
    Chopra A; Kumari Y; Singh AP; Sharma Y
    Luminescence; 2024 Aug; 39(8):e4870. PubMed ID: 39155541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, Properties, and Application of Lignocellulosic-Based Fluorescent Carbon Dots.
    Song X; Zhao S; Xu Y; Chen X; Wang S; Zhao P; Pu Y; Ragauskas AJ
    ChemSusChem; 2022 Apr; 15(8):e202102486. PubMed ID: 35199466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in waste-derived carbon dots and their nanocomposites for environmental remediation and biological applications.
    Soni H; Bhattu M; Sd P; Kaur M; Verma M; Singh J
    Environ Res; 2024 Jun; 251(Pt 1):118560. PubMed ID: 38447603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of modified mesoporous boehmite (γ-AlOOH) with green synthesis carbon quantum dots for a fabrication biosensor to determine trace amounts of doxorubicin.
    Rezaei B; Hassani Z; Shahshahanipour M; Ensafi AA; Mohammadnezhad G
    Luminescence; 2018 Dec; 33(8):1377-1386. PubMed ID: 30402901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of biomass-derived carbon dots as highly sensitive and selective templates for the sensing of hazardous ions.
    Singh P; Arpita ; Kumar S; Kumar P; Kataria N; Bhankar V; Kumar K; Kumar R; Hsieh CT; Khoo KS
    Nanoscale; 2023 Oct; 15(40):16241-16267. PubMed ID: 37439261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turning food waste into value-added carbon dots for sustainable food packaging application: A review.
    Oladzadabbasabadi N; Dheyab MA; Nafchi AM; Ghasemlou M; Ivanova EP; Adhikari B
    Adv Colloid Interface Sci; 2023 Nov; 321():103020. PubMed ID: 37871382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensor heavy metal from natural resources for a green environment: A review relation between synthesis method and luminescence properties of carbon dots.
    Jariah A; Shiddiq M; Armynah B; Tahir D
    Luminescence; 2022 Aug; 37(8):1246-1258. PubMed ID: 35671060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nanozyme multifunctional platform based on iron doped carbon dots derived from Tibetan Ganoderma lucidum waste for glucose sensing, anti-counterfeiting applications, and anticancer cell effect.
    Wang L; Zheng S; Liu Y; Ji Y; Liu X; Wang F; Li C
    Talanta; 2024 Aug; 276():126262. PubMed ID: 38761660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.