BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37165541)

  • 1. Biochemical and structural characterization of meningococcal methylenetetrahydrofolate reductase.
    Pantong W; Pederick JL; Maenpuen S; Tinikul R; Jayapalan JJ; Jovcevski B; Wegener KL; Bruning JB; Salaemae W
    Protein Sci; 2023 Jun; 32(6):e4654. PubMed ID: 37165541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of NADH and CH3-H4folate complexes of Escherichia coli methylenetetrahydrofolate reductase reveal a spartan strategy for a ping-pong reaction.
    Pejchal R; Sargeant R; Ludwig ML
    Biochemistry; 2005 Aug; 44(34):11447-57. PubMed ID: 16114881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional characterization of a mycobacterial methylenetetrahydrofolate reductase utilizing NADH as the exclusive cofactor.
    Li J; Yang M; Li W; Lu C; Feng D; Shang Z; Wang C; Lin W
    Biochem J; 2023 Jul; 480(14):1129-1146. PubMed ID: 37435857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folate activation and catalysis in methylenetetrahydrofolate reductase from Escherichia coli: roles for aspartate 120 and glutamate 28.
    Trimmer EE; Ballou DP; Ludwig ML; Matthews RG
    Biochemistry; 2001 May; 40(21):6216-26. PubMed ID: 11371182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional role for the conformationally mobile phenylalanine 223 in the reaction of methylenetetrahydrofolate reductase from Escherichia coli.
    Lee MN; Takawira D; Nikolova AP; Ballou DP; Furtado VC; Phung NL; Still BR; Thorstad MK; Tanner JJ; Trimmer EE
    Biochemistry; 2009 Aug; 48(32):7673-85. PubMed ID: 19610625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for glutamine 183 in the folate oxidative half-reaction of methylenetetrahydrofolate reductase from Escherichia coli.
    Zuo C; Jolly AL; Nikolova AP; Satzer DI; Cao S; Sanchez JS; Ballou DP; Trimmer EE
    Arch Biochem Biophys; 2018 Mar; 642():63-74. PubMed ID: 29407039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P.
    Tanner JJ; Tu SC; Barbour LJ; Barnes CL; Krause KL
    Protein Sci; 1999 Sep; 8(9):1725-32. PubMed ID: 10493573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspartate 120 of Escherichia coli methylenetetrahydrofolate reductase: evidence for major roles in folate binding and catalysis and a minor role in flavin reactivity.
    Trimmer EE; Ballou DP; Galloway LJ; Scannell SA; Brinker DR; Casas KR
    Biochemistry; 2005 May; 44(18):6809-22. PubMed ID: 15865426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5-Formyltetrahydrofolate promotes conformational remodeling in a methylenetetrahydrofolate reductase active site and inhibits its activity.
    Yamada K; Mendoza J; Koutmos M
    J Biol Chem; 2023 Feb; 299(2):102855. PubMed ID: 36592927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monomeric NADH-Oxidizing Methylenetetrahydrofolate Reductases from Mycobacterium smegmatis Lack Flavin Coenzyme.
    Sah S; Lahry K; Talwar C; Singh S; Varshney U
    J Bacteriol; 2020 May; 202(12):. PubMed ID: 32253341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry.
    Wolthers KR; Lou X; Toogood HS; Leys D; Scrutton NS
    Biochemistry; 2007 Oct; 46(42):11833-44. PubMed ID: 17892308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.
    Igari S; Ohtaki A; Yamanaka Y; Sato Y; Yohda M; Odaka M; Noguchi K; Yamada K
    PLoS One; 2011; 6(8):e23716. PubMed ID: 21858212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylenetetrahydrofolate reductase: biochemical characterization and medical significance.
    Trimmer EE
    Curr Pharm Des; 2013; 19(14):2574-93. PubMed ID: 23116396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii.
    Bertsch J; Öppinger C; Hess V; Langer JD; Müller V
    J Bacteriol; 2015 May; 197(9):1681-9. PubMed ID: 25733614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the regulation of human 5,10-methylenetetrahydrofolate reductase by phosphorylation and S-adenosylmethionine inhibition.
    Froese DS; Kopec J; Rembeza E; Bezerra GA; Oberholzer AE; Suormala T; Lutz S; Chalk R; Borkowska O; Baumgartner MR; Yue WW
    Nat Commun; 2018 Jun; 9(1):2261. PubMed ID: 29891918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylenetetrahydrofolate reductase from Escherichia coli: elucidation of the kinetic mechanism by steady-state and rapid-reaction studies.
    Trimmer EE; Ballou DP; Matthews RG
    Biochemistry; 2001 May; 40(21):6205-15. PubMed ID: 11371181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights on the structural perturbations in human MTHFR Ala222Val mutant by protein modeling and molecular dynamics.
    Abhinand PA; Shaikh F; Bhakat S; Radadiya A; Bhaskar LV; Shah A; Ragunath PK
    J Biomol Struct Dyn; 2016; 34(4):892-905. PubMed ID: 26273990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of S-adenosylmethionine-dependent allosteric transition from active to inactive states in methylenetetrahydrofolate reductase.
    Yamada K; Mendoza J; Koutmos M
    Nat Commun; 2024 Jun; 15(1):5167. PubMed ID: 38886362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural perturbations in the Ala --> Val polymorphism of methylenetetrahydrofolate reductase: how binding of folates may protect against inactivation.
    Pejchal R; Campbell E; Guenther BD; Lennon BW; Matthews RG; Ludwig ML
    Biochemistry; 2006 Apr; 45(15):4808-18. PubMed ID: 16605249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.