These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 37165741)

  • 1. Augmenting Immunogenic Cell Death and Alleviating Myeloid-Derived Suppressor Cells by Sono-Activatable Semiconducting Polymer Nanopartners for Immunotherapy.
    Ding M; Zhang Y; Yu N; Zhou J; Zhu L; Wang X; Li J
    Adv Mater; 2023 Aug; 35(33):e2302508. PubMed ID: 37165741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sono-Activatable Semiconducting Polymer Nanoreshapers Multiply Remodel Tumor Microenvironment for Potent Immunotherapy of Orthotopic Pancreatic Cancer.
    Li M; Liu Y; Zhang Y; Yu N; Li J
    Adv Sci (Weinh); 2023 Dec; 10(35):e2305150. PubMed ID: 37870196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-Programmable Semiconducting Polymer NanoPROTACs for Deep-Tissue Sonodynamic-Ferroptosis Activatable Immunotherapy.
    Wang F; Dong G; Ding M; Yu N; Sheng C; Li J
    Small; 2024 Feb; 20(8):e2306378. PubMed ID: 37817359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prodrug-loaded semiconducting polymer hydrogels for deep-tissue sono-immunotherapy of orthotopic glioblastoma.
    Zhu L; Wang X; Ding M; Yu N; Zhang Y; Wu H; Zhang Q; Liu J; Li J
    Biomater Sci; 2023 Oct; 11(20):6823-6833. PubMed ID: 37623749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activatable Semiconducting Polymer Pro-nanomodulators for Deep-Tissue Sono-immunotherapy of Orthotopic Pancreatic Cancer.
    Li J; Yu N; Cui D; Huang J; Luo Y; Pu K
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202305200. PubMed ID: 37194682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activatable Cancer Sono-Immunotherapy using Semiconducting Polymer Nanobodies.
    Zeng Z; Zhang C; He S; Li J; Pu K
    Adv Mater; 2022 Jul; 34(28):e2203246. PubMed ID: 35524454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision cancer sono-immunotherapy using deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles.
    Li J; Luo Y; Zeng Z; Cui D; Huang J; Xu C; Li L; Pu K; Zhang R
    Nat Commun; 2022 Jul; 13(1):4032. PubMed ID: 35821238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric STING Pro-agonists for Tumor-Specific Sonodynamic Immunotherapy.
    Yu J; He S; Zhang C; Xu C; Huang J; Xu M; Pu K
    Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202307272. PubMed ID: 37312610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sono-Driven STING Activation using Semiconducting Polymeric Nanoagonists for Precision Sono-Immunotherapy of Head and Neck Squamous Cell Carcinoma.
    Jiang J; Zhang M; Lyu T; Chen L; Wu M; Li R; Li H; Wang X; Jiang X; Zhen X
    Adv Mater; 2023 Jul; 35(30):e2300854. PubMed ID: 37119091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sono-Triggered Cascade Lactate Depletion by Semiconducting Polymer Nanoreactors for Cuproptosis-Immunotherapy of Pancreatic Cancer.
    Yu N; Zhou J; Ding M; Li M; Peng S; Li J
    Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202405639. PubMed ID: 38708791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconducting polymer nanoprodrugs enable tumor-specific therapy via sono-activatable ferroptosis.
    Wang F; Wu Z; Zhang Y; Li M; Wei P; Yi T; Li J
    Biomaterials; 2025 Jan; 312():122722. PubMed ID: 39096841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer cell membrane-coated C-TiO
    Ning S; Dai X; Tang W; Guo Q; Lyu M; Zhu D; Zhang W; Qian H; Yao X; Wang X
    Acta Biomater; 2022 Oct; 152():562-574. PubMed ID: 36067874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria-targeted and ultrasound-responsive nanoparticles for oxygen and nitric oxide codelivery to reverse immunosuppression and enhance sonodynamic therapy for immune activation.
    Ji C; Si J; Xu Y; Zhang W; Yang Y; He X; Xu H; Mou X; Ren H; Guo H
    Theranostics; 2021; 11(17):8587-8604. PubMed ID: 34373760
    [No Abstract]   [Full Text] [Related]  

  • 14. Controllable hypoxia-activated chemotherapy as a dual enhancer for synergistic cancer photodynamic immunotherapy.
    Wang M; He M; Zhang M; Xue S; Xu T; Zhao Y; Li D; Zhi F; Ding D
    Biomaterials; 2023 Oct; 301():122257. PubMed ID: 37531778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Tadalafil Nanovaccine for Cancer Immunotherapy by Alleviating Myeloid-Derived Suppressor Cells and Heightening Immunogenicity.
    Zhang T; Xiong H; Ma X; Gao Y; Xue P; Kang Y; Sun ZJ; Xu Z
    Small Methods; 2021 Jun; 5(6):e2100115. PubMed ID: 34927922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activatable Semiconducting Polymer Nanoinducers Amplify Oxidative Damage via Sono-Ferroptosis for Synergistic Therapy of Bone Metastasis.
    Zhang Y; Zhang Q; Wang F; Li M; Shi X; Li J
    Nano Lett; 2023 Aug; 23(16):7699-7708. PubMed ID: 37565802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Semiconducting Iron-Chelating Nano-immunomodulator for Specific and Sensitized Sono-metallo-immunotherapy of Cancer.
    He S; Yu J; Xu M; Zhang C; Xu C; Cheng P; Pu K
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202310178. PubMed ID: 37671691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prodrug and Glucose Oxidase Coloaded Photodynamic Hydrogels for Combinational Therapy of Melanoma.
    Zhou J; Liu C; Wang Y; Ding M; Yu N; Liu D; Zhang Q; Li J
    ACS Biomater Sci Eng; 2022 Nov; 8(11):4886-4895. PubMed ID: 36278808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circumventing Myeloid-Derived Suppressor Cell-Mediated Immunosuppression Using an Oxygen-Generated and -Economized Nanoplatform.
    Zuo H; Hou Y; Yu Y; Li Z; Liu H; Liu C; He J; Miao L
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55723-55736. PubMed ID: 33274915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization and quantification of
    Hoffmann SHL; Reck DI; Maurer A; Fehrenbacher B; Sceneay JE; Poxleitner M; Öz HH; Ehrlichmann W; Reischl G; Fuchs K; Schaller M; Hartl D; Kneilling M; Möller A; Pichler BJ; Griessinger CM
    Theranostics; 2019; 9(20):5869-5885. PubMed ID: 31534525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.