BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37165873)

  • 1. Machine learning transferable atomic forces for large systems from underconverged molecular fragments.
    Herbold M; Behler J
    Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials.
    Herbold M; Behler J
    J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to train a neural network potential.
    Tokita AM; Behler J
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFT-Quality Adsorption Simulations in Metal-Organic Frameworks Enabled by Machine Learning Potentials.
    Goeminne R; Vanduyfhuys L; Van Speybroeck V; Verstraelen T
    J Chem Theory Comput; 2023 Sep; 19(18):6313-6325. PubMed ID: 37642314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5.
    Eckhoff M; Behler J
    J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials.
    Omranpour A; Montero De Hijes P; Behler J; Dellago C
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-dimensional neural network potentials for accurate vibrational frequencies: the formic acid dimer benchmark.
    Shanavas Rasheeda D; Martín Santa Daría A; Schröder B; Mátyus E; Behler J
    Phys Chem Chem Phys; 2022 Dec; 24(48):29381-29392. PubMed ID: 36459127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions.
    Pan X; Yang J; Van R; Epifanovsky E; Ho J; Huang J; Pu J; Mei Y; Nam K; Shao Y
    J Chem Theory Comput; 2021 Sep; 17(9):5745-5758. PubMed ID: 34468138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nearsighted force-training approach to systematically generate training data for the machine learning of large atomic structures.
    Zeng C; Chen X; Peterson AA
    J Chem Phys; 2022 Feb; 156(6):064104. PubMed ID: 35168344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspective: Machine learning potentials for atomistic simulations.
    Behler J
    J Chem Phys; 2016 Nov; 145(17):170901. PubMed ID: 27825224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate and Transferable Machine Learning Potential for Molecular Dynamics Simulation of Sodium Silicate Glasses.
    Bertani M; Charpentier T; Faglioni F; Pedone A
    J Chem Theory Comput; 2024 Feb; 20(3):1358-1370. PubMed ID: 38217496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks.
    Sun G; Sautet P
    J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Fourth-Generation Machine Learning Potentials by Electrostatic Embedding.
    Ko TW; Finkler JA; Goedecker S; Behler J
    J Chem Theory Comput; 2023 Jun; 19(12):3567-3579. PubMed ID: 37289440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsystem Density Functional Theory Augmented by a Delta Learning Approach to Achieve Kohn-Sham Accuracy.
    Pauletti M; Rybkin VV; Iannuzzi M
    J Chem Theory Comput; 2021 Oct; 17(10):6423-6431. PubMed ID: 34505765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning from the density to correct total energy and forces in first principle simulations.
    Dick S; Fernandez-Serra M
    J Chem Phys; 2019 Oct; 151(14):144102. PubMed ID: 31615245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments.
    Zaverkin V; Holzmüller D; Steinwart I; Kästner J
    J Chem Theory Comput; 2021 Oct; 17(10):6658-6670. PubMed ID: 34585927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AENET-LAMMPS and AENET-TINKER: Interfaces for accurate and efficient molecular dynamics simulations with machine learning potentials.
    Chen MS; Morawietz T; Mori H; Markland TE; Artrith N
    J Chem Phys; 2021 Aug; 155(7):074801. PubMed ID: 34418919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Nat Commun; 2021 Jan; 12(1):398. PubMed ID: 33452239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems.
    Behler J
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):12828-12840. PubMed ID: 28520235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.