These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37165873)

  • 21. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes.
    Gastegger M; Kauffmann C; Behler J; Marquetand P
    J Chem Phys; 2016 May; 144(19):194110. PubMed ID: 27208939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics.
    Zhou G; Lubbers N; Barros K; Tretiak S; Nebgen B
    Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2120333119. PubMed ID: 35776544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine Learning Diffusion Monte Carlo Forces.
    Huang C; Rubenstein BM
    J Phys Chem A; 2023 Jan; 127(1):339-355. PubMed ID: 36576803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improve the performance of machine-learning potentials by optimizing descriptors.
    Gao H; Wang J; Sun J
    J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural Network Potentials: A Concise Overview of Methods.
    Kocer E; Ko TW; Behler J
    Annu Rev Phys Chem; 2022 Apr; 73():163-186. PubMed ID: 34982580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Addressing uncertainty in atomistic machine learning.
    Peterson AA; Christensen R; Khorshidi A
    Phys Chem Chem Phys; 2017 May; 19(18):10978-10985. PubMed ID: 28418054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transferable Machine-Learning Model of the Electron Density.
    Grisafi A; Fabrizio A; Meyer B; Wilkins DM; Corminboeuf C; Ceriotti M
    ACS Cent Sci; 2019 Jan; 5(1):57-64. PubMed ID: 30693325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Four Generations of High-Dimensional Neural Network Potentials.
    Behler J
    Chem Rev; 2021 Aug; 121(16):10037-10072. PubMed ID: 33779150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accuracy Assessment of Atomistic Neural Network Potentials: The Impact of Cutoff Radius and Message Passing.
    Xia J; Zhang Y; Jiang B
    J Phys Chem A; 2023 Nov; 127(46):9874-9883. PubMed ID: 37943102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials
    Hajibabaei A; Umer M; Anand R; Ha M; Kim KS
    J Phys Condens Matter; 2022 Jun; 34(34):. PubMed ID: 35675808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks.
    Nebgen B; Lubbers N; Smith JS; Sifain AE; Lokhov A; Isayev O; Roitberg AE; Barros K; Tretiak S
    J Chem Theory Comput; 2018 Sep; 14(9):4687-4698. PubMed ID: 30064217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum machine learning using atom-in-molecule-based fragments selected on the fly.
    Huang B; von Lilienfeld OA
    Nat Chem; 2020 Oct; 12(10):945-951. PubMed ID: 32929248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Training machine learning potentials for reactive systems: A Colab tutorial on basic models.
    Pan X; Snyder R; Wang JN; Lander C; Wickizer C; Van R; Chesney A; Xue Y; Mao Y; Mei Y; Pu J; Shao Y
    J Comput Chem; 2024 Apr; 45(10):638-647. PubMed ID: 38082539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atom-centered symmetry functions for constructing high-dimensional neural network potentials.
    Behler J
    J Chem Phys; 2011 Feb; 134(7):074106. PubMed ID: 21341827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accelerating Metadynamics-Based Free-Energy Calculations with Adaptive Machine Learning Potentials.
    Xu J; Cao XM; Hu P
    J Chem Theory Comput; 2021 Jul; 17(7):4465-4476. PubMed ID: 34100605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Representing potential energy surfaces by high-dimensional neural network potentials.
    Behler J
    J Phys Condens Matter; 2014 May; 26(18):183001. PubMed ID: 24758952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Next-Generation Accurate, Transferable, and Polarizable Potentials for Material Simulations.
    Hogan A; Space B
    J Chem Theory Comput; 2020 Dec; 16(12):7632-7644. PubMed ID: 33251798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data-Efficient Machine Learning Potentials from Transfer Learning of Periodic Correlated Electronic Structure Methods: Liquid Water at AFQMC, CCSD, and CCSD(T) Accuracy.
    Chen MS; Lee J; Ye HZ; Berkelbach TC; Reichman DR; Markland TE
    J Chem Theory Comput; 2023 Jul; 19(14):4510-4519. PubMed ID: 36730728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.