These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37165904)

  • 1. Time-resolved detection of light-induced conformational changes of heliorhodopsin.
    Nakasone Y; Kawasaki Y; Konno M; Inoue K; Terazima M
    Phys Chem Chem Phys; 2023 May; 25(18):12833-12840. PubMed ID: 37165904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Induced Conformational Alterations in Heliorhodopsin Triggered by the Retinal Excited State.
    Das I; Pushkarev A; Sheves M
    J Phys Chem B; 2021 Aug; 125(31):8797-8804. PubMed ID: 34342994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of heliorhodopsin.
    Shihoya W; Inoue K; Singh M; Konno M; Hososhima S; Yamashita K; Ikeda K; Higuchi A; Izume T; Okazaki S; Hashimoto M; Mizutori R; Tomida S; Yamauchi Y; Abe-Yoshizumi R; Katayama K; Tsunoda SP; Shibata M; Furutani Y; Pushkarev A; Béjà O; Uchihashi T; Kandori H; Nureki O
    Nature; 2019 Oct; 574(7776):132-136. PubMed ID: 31554965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low pH structure of heliorhodopsin reveals chloride binding site and intramolecular signaling pathway.
    Besaw JE; Reichenwallner J; De Guzman P; Tucs A; Kuo A; Morizumi T; Tsuda K; Sljoka A; Miller RJD; Ernst OP
    Sci Rep; 2022 Aug; 12(1):13955. PubMed ID: 35977989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of retinal chromophore and protonated Schiff base in Thermoplasmatales archaeon heliorhodopsin using solid-state NMR spectroscopy.
    Suzuki S; Kumagai S; Nagashima T; Yamazaki T; Okitsu T; Wada A; Naito A; Katayama K; Inoue K; Kandori H; Kawamura I
    Biophys Chem; 2023 May; 296():106991. PubMed ID: 36905840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Dynamics of Heliorhodopsins.
    Tahara S; Singh M; Kuramochi H; Shihoya W; Inoue K; Nureki O; Béjà O; Mizutani Y; Kandori H; Tahara T
    J Phys Chem B; 2019 Mar; 123(11):2507-2512. PubMed ID: 30742768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc Binding to Heliorhodopsin.
    Hashimoto M; Katayama K; Furutani Y; Kandori H
    J Phys Chem Lett; 2020 Oct; 11(20):8604-8609. PubMed ID: 32940480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific zinc binding to heliorhodopsin.
    Hashimoto M; Miyagawa K; Singh M; Katayama K; Shoji M; Furutani Y; Shigeta Y; Kandori H
    Phys Chem Chem Phys; 2023 Jan; 25(4):3535-3543. PubMed ID: 36637167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman Determination of Chromophore Structures of Heliorhodopsin Photointermediates.
    Urui T; Mizuno M; Otomo A; Kandori H; Mizutani Y
    J Phys Chem B; 2021 Jul; 125(26):7155-7162. PubMed ID: 34167296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation Study of Heliorhodopsin 48C12.
    Singh M; Inoue K; Pushkarev A; Béjà O; Kandori H
    Biochemistry; 2018 Aug; 57(33):5041-5049. PubMed ID: 30036039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for unique color tuning mechanism in heliorhodopsin.
    Tanaka T; Singh M; Shihoya W; Yamashita K; Kandori H; Nureki O
    Biochem Biophys Res Commun; 2020 Dec; 533(3):262-267. PubMed ID: 32951839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photophysiological functions of visual pigments.
    Yoshizawa T
    Adv Biophys; 1984; 17():5-67. PubMed ID: 6242325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse Hydrogen-Bonding Change Between the Protonated Retinal Schiff Base and Water Molecules upon Photoisomerization in Heliorhodopsin 48C12.
    Tomida S; Kitagawa S; Kandori H; Furutani Y
    J Phys Chem B; 2021 Aug; 125(30):8331-8341. PubMed ID: 34292728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on cephalopod rhodopsin conformational changes in chromophore and protein during the photoregeneration process.
    Suzuki T; Sugahara M; Azuma K; Azuma M; Saimi Y; Kito Y
    Biochim Biophys Acta; 1974 Jan; 333(1):149-60. PubMed ID: 19397002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsolvation Effects in the Spectral Tuning of Heliorhodopsin.
    Wijesiri K; Gascón JA
    J Phys Chem B; 2022 Aug; 126(31):5803-5809. PubMed ID: 35894868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heliorhodopsin Evolution Is Driven by Photosensory Promiscuity in Monoderms.
    Bulzu PA; Kavagutti VS; Chiriac MC; Vavourakis CD; Inoue K; Kandori H; Andrei AS; Ghai R
    mSphere; 2021 Dec; 6(6):e0066121. PubMed ID: 34817235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of circular dichroism of xanthorhodopsin. A study with artificial pigments.
    Smolensky Koganov E; Brumfeld V; Friedman N; Sheves M
    J Phys Chem B; 2015 Jan; 119(2):456-64. PubMed ID: 25494883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chirality origin of retinal-carotenoid complex in gloeobacter rhodopsin: a temperature-dependent excitonic coupling.
    Jana S; Jung KH; Sheves M
    Sci Rep; 2020 Aug; 10(1):13992. PubMed ID: 32814821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution structural insights into the heliorhodopsin family.
    Kovalev K; Volkov D; Astashkin R; Alekseev A; Gushchin I; Haro-Moreno JM; Chizhov I; Siletsky S; Mamedov M; Rogachev A; Balandin T; Borshchevskiy V; Popov A; Bourenkov G; Bamberg E; Rodriguez-Valera F; Büldt G; Gordeliy V
    Proc Natl Acad Sci U S A; 2020 Feb; 117(8):4131-4141. PubMed ID: 32034096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman Investigation of the Chromophore Structure of Heliorhodopsins.
    Otomo A; Mizuno M; Singh M; Shihoya W; Inoue K; Nureki O; Béjà O; Kandori H; Mizutani Y
    J Phys Chem Lett; 2018 Nov; 9(22):6431-6436. PubMed ID: 30351947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.