These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 37166020)
1. Defect-Healing Induced Monoclinic Iron-Based Prussian Blue Analogs as High-Performance Cathode Materials for Sodium-Ion Batteries. Peng J; Huang J; Gao Y; Qiao Y; Dong H; Liu Y; Li L; Wang J; Dou S; Chou S Small; 2023 Sep; 19(36):e2300435. PubMed ID: 37166020 [TBL] [Abstract][Full Text] [Related]
2. Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries. Liu Y; Fan S; Gao Y; Liu Y; Zhang H; Chen J; Chen X; Huang J; Liu X; Li L; Qiao Y; Chou S Small; 2023 Oct; 19(43):e2302687. PubMed ID: 37376874 [TBL] [Abstract][Full Text] [Related]
3. Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries. Rehman R; Peng J; Yi H; Shen Y; Yin J; Li C; Fang C; Li Q; Han J RSC Adv; 2020 Jul; 10(45):27033-27041. PubMed ID: 35515809 [TBL] [Abstract][Full Text] [Related]
4. In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries. Xu Y; Chang M; Fang C; Liu Y; Qiu Y; Ou M; Peng J; Wei P; Deng Z; Sun S; Sun X; Li Q; Han J; Huang Y ACS Appl Mater Interfaces; 2019 Aug; 11(33):29985-29992. PubMed ID: 31364834 [TBL] [Abstract][Full Text] [Related]
5. Vacancies-regulated Prussian Blue Analogues through Precipitation Conversion for Cathodes in Sodium-ion Batteries with Energy Densities over 500 Wh/kg. Liu J; Wang Y; Jiang N; Wen B; Yang C; Liu Y Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202400214. PubMed ID: 38299760 [TBL] [Abstract][Full Text] [Related]
6. Highly Crystalline Multivariate Prussian Blue Analogs via Equilibrium Chelation Strategy for Stable and Fast Charging Sodium-Ion Batteries. Wang Y; Liu J; Jiang N; Yang J; Yang C; Liu Y Small; 2024 Nov; 20(44):e2403211. PubMed ID: 38958082 [TBL] [Abstract][Full Text] [Related]
7. High-Entropy and Component Stoichiometry Tuning Strategies Boost the Sodium-Ion Storage Performance of Cobalt-Free Prussian Blue Analogues Cathode Materials. Lin YT; Niu BT; Wang ZH; Li YX; Xu YP; Liu SW; Chen YX; Lin XM Molecules; 2024 Sep; 29(19):. PubMed ID: 39407489 [TBL] [Abstract][Full Text] [Related]
8. Na Xu CM; Peng J; Liu XH; Lai WH; He XX; Yang Z; Wang JZ; Qiao Y; Li L; Chou SL Small Methods; 2022 Aug; 6(8):e2200404. PubMed ID: 35730654 [TBL] [Abstract][Full Text] [Related]
9. Ball Milling Solid-State Synthesis of Highly Crystalline Prussian Blue Analogue Na Peng J; Gao Y; Zhang H; Liu Z; Zhang W; Li L; Qiao Y; Yang W; Wang J; Dou S; Chou S Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202205867. PubMed ID: 35583767 [TBL] [Abstract][Full Text] [Related]
10. Coordination engineering for iron-based hexacyanoferrate as a high-stability cathode for sodium-ion batteries. Zhong J; Xia L; Chen S; Zhang Z; Pei Y; Chen H; Sun H; Zhu J; Lu B; Zhang Y Proc Natl Acad Sci U S A; 2024 Jul; 121(31):e2319193121. PubMed ID: 39052833 [TBL] [Abstract][Full Text] [Related]
11. Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. Qin M; Ren W; Jiang R; Li Q; Yao X; Wang S; You Y; Mai L ACS Appl Mater Interfaces; 2021 Jan; 13(3):3999-4007. PubMed ID: 33439613 [TBL] [Abstract][Full Text] [Related]
12. High Crystalline Prussian White Nanocubes as a Promising Cathode for Sodium-ion Batteries. Li C; Zang R; Li P; Man Z; Wang S; Li X; Wu Y; Liu S; Wang G Chem Asian J; 2018 Feb; 13(3):342-349. PubMed ID: 29281173 [TBL] [Abstract][Full Text] [Related]
13. Monoclinic Bimetallic Prussian Blue Analog Cathode with High Capacity and Long Life for Advanced Sodium Storage. Shen L; Jiang Y; Jiang Y; Ma J; Yang K; Ma H; Liu Q; Zhu N ACS Appl Mater Interfaces; 2022 Jun; 14(21):24332-24340. PubMed ID: 35604045 [TBL] [Abstract][Full Text] [Related]
14. Ultra-Long Cycle of Prussian Blue Analogs Achieved by Equilibrium Electrolyte for Aqueous Sodium-Ion Batteries. Liu J; Yang C; Wen B; Li B; Liu Y Small; 2023 Nov; 19(46):e2303896. PubMed ID: 37460403 [TBL] [Abstract][Full Text] [Related]
15. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Wang W; Gang Y; Hu Z; Yan Z; Li W; Li Y; Gu QF; Wang Z; Chou SL; Liu HK; Dou SX Nat Commun; 2020 Feb; 11(1):980. PubMed ID: 32080172 [TBL] [Abstract][Full Text] [Related]
16. High-Performance Fe-Based Prussian Blue Cathode Material for Enhancing the Activity of Low-Spin Fe by Cu Doping. Chen ZY; Fu XY; Zhang LL; Yan B; Yang XL ACS Appl Mater Interfaces; 2022 Feb; 14(4):5506-5513. PubMed ID: 35072463 [TBL] [Abstract][Full Text] [Related]
17. Preparation of Low-Defect Manganese-Based Prussian Blue Cathode Materials with Cubic Structure for Sodium-Ion Batteries via Coprecipitation Method. Dong X; Wang H; Wang J; Wang Q; Wang H; Hao W; Lu F Molecules; 2023 Oct; 28(21):. PubMed ID: 37959684 [TBL] [Abstract][Full Text] [Related]
18. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278 [TBL] [Abstract][Full Text] [Related]
19. Defect-Free Prussian Blue Analogue as Zero-Strain Cathode Material for High-Energy-Density Potassium-Ion Batteries. Zhou Q; Liu HK; Dou SX; Chong S ACS Nano; 2024 Mar; 18(9):7287-7297. PubMed ID: 38373205 [TBL] [Abstract][Full Text] [Related]
20. Prussian Blue Analogues with Optimized Crystal Plane Orientation and Low Crystal Defects toward 450 Wh kg Zhang H; Gao Y; Peng J; Fan Y; Zhao L; Li L; Xiao Y; Pang WK; Wang J; Chou SL Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202303953. PubMed ID: 37118911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]