These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37166028)
1. Bioprocess in-line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model. Müller DH; Flake C; Brands T; Koß HJ Biotechnol Bioeng; 2023 Jul; 120(7):1857-1868. PubMed ID: 37166028 [TBL] [Abstract][Full Text] [Related]
2. Bioprocess in-line monitoring and control using Raman spectroscopy and Indirect Hard Modeling (IHM). Müller DH; Börger M; Thien J; Koß HJ Biotechnol Bioeng; 2024 Jul; 121(7):2225-2233. PubMed ID: 38678541 [TBL] [Abstract][Full Text] [Related]
3. Monitoring a bioprocess for ethanol production using FT-MIR and FT-Raman spectroscopy. Sivakesava S; Irudayaraj J; Demirci A J Ind Microbiol Biotechnol; 2001 Apr; 26(4):185-90. PubMed ID: 11464265 [TBL] [Abstract][Full Text] [Related]
4. Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation. Hirsch E; Pataki H; Domján J; Farkas A; Vass P; Fehér C; Barta Z; Nagy ZK; Marosi GJ; Csontos I Biotechnol Prog; 2019 Sep; 35(5):e2848. PubMed ID: 31115976 [TBL] [Abstract][Full Text] [Related]
5. Quantitative monitoring of yeast fermentation using Raman spectroscopy. Iversen JA; Berg RW; Ahring BK Anal Bioanal Chem; 2014 Aug; 406(20):4911-9. PubMed ID: 24996999 [TBL] [Abstract][Full Text] [Related]
6. Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms. Dzurendova S; Olsen PM; Byrtusová D; Tafintseva V; Shapaval V; Horn SJ; Kohler A; Szotkowski M; Marova I; Zimmermann B Microb Cell Fact; 2023 Dec; 22(1):261. PubMed ID: 38110983 [TBL] [Abstract][Full Text] [Related]
7. Non-contact Raman spectroscopy for in-line monitoring of glucose and ethanol during yeast fermentations. Schalk R; Braun F; Frank R; Rädle M; Gretz N; Methner FJ; Beuermann T Bioprocess Biosyst Eng; 2017 Oct; 40(10):1519-1527. PubMed ID: 28656375 [TBL] [Abstract][Full Text] [Related]
8. Raman spectroscopy and chemometrics for on-line control of glucose fermentation by Saccharomyces cerevisiae. Avila TC; Poppi RJ; Lunardi I; Tizei PA; Pereira GA Biotechnol Prog; 2012; 28(6):1598-604. PubMed ID: 22887966 [TBL] [Abstract][Full Text] [Related]
9. Development of Raman Calibration Model Without Culture Data for In-Line Analysis of Metabolites in Cell Culture Media. Hara R; Kobayashi W; Yamanaka H; Murayama K; Shimoda S; Ozaki Y Appl Spectrosc; 2023 May; 77(5):521-533. PubMed ID: 36765462 [TBL] [Abstract][Full Text] [Related]
10. Monitoring mAb cultivations with in-situ raman spectroscopy: The influence of spectral selectivity on calibration models and industrial use as reliable PAT tool. Santos RM; Kessler JM; Salou P; Menezes JC; Peinado A Biotechnol Prog; 2018 May; 34(3):659-670. PubMed ID: 29603907 [TBL] [Abstract][Full Text] [Related]
12. Validation of the cell culture monitoring using a Raman spectroscopy calibration model developed with artificially mixed samples and investigation of model learning methods using initial batch data. Hara R; Kobayashi W; Yamanaka H; Murayama K; Shimoda S; Ozaki Y Anal Bioanal Chem; 2024 Jan; 416(2):569-581. PubMed ID: 38099966 [TBL] [Abstract][Full Text] [Related]
13. Development of an in-line Raman analytical method for commercial-scale CHO cell culture process monitoring: Influence of measurement channels and batch number on model performance. Yan X; Dong X; Wan Y; Gao D; Chen Z; Zhang Y; Zheng Z; Chen K; Jiao J; Sun Y; He Z; Nie L; Fan X; Wang H; Qu H Biotechnol J; 2024 Jan; 19(1):e2300395. PubMed ID: 38180295 [TBL] [Abstract][Full Text] [Related]
14. Monitoring lignocellulosic bioethanol production processes using Raman spectroscopy. Iversen JA; Ahring BK Bioresour Technol; 2014 Nov; 172():112-120. PubMed ID: 25255187 [TBL] [Abstract][Full Text] [Related]
15. Development of generic metabolic Raman calibration models using solution titration in aqueous phase and data augmentation for in-line cell culture analysis. Zhang Z; Lang Z; Chen G; Zhou H; Zhou W Biotechnol Bioeng; 2024 Jul; 121(7):2193-2204. PubMed ID: 38639160 [TBL] [Abstract][Full Text] [Related]
16. In-situ monitoring of Saccharomyces cerevisiae ITV01 bioethanol process using near-infrared spectroscopy NIRS and chemometrics. Corro-Herrera VA; Gómez-Rodríguez J; Hayward-Jones PM; Barradas-Dermitz DM; Aguilar-Uscanga MG; Gschaedler-Mathis AC Biotechnol Prog; 2016 Mar; 32(2):510-7. PubMed ID: 26743160 [TBL] [Abstract][Full Text] [Related]
17. In-line Monitoring of Monomer and Polymer Content During Microgel Synthesis Using Precipitation Polymerization via Raman Spectroscopy and Indirect Hard Modeling. Meyer-Kirschner J; Kather M; Pich A; Engel D; Marquardt W; Viell J; Mitsos A Appl Spectrosc; 2016 Mar; 70(3):416-26. PubMed ID: 26810183 [TBL] [Abstract][Full Text] [Related]
18. Improving reliability of Raman spectroscopy for mAb production by upstream processes during bioprocess development stages. Santos RM; Kaiser P; Menezes JC; Peinado A Talanta; 2019 Jul; 199():396-406. PubMed ID: 30952275 [TBL] [Abstract][Full Text] [Related]
19. Monitoring multiple components in vinegar fermentation using Raman spectroscopy. Uysal RS; Soykut EA; Boyaci IH; Topcu A Food Chem; 2013 Dec; 141(4):4333-43. PubMed ID: 23993623 [TBL] [Abstract][Full Text] [Related]
20. Inline Raman Spectroscopy and Indirect Hard Modeling for Concentration Monitoring of Dissociated Acid Species. Echtermeyer A; Marks C; Mitsos A; Viell J Appl Spectrosc; 2021 May; 75(5):506-519. PubMed ID: 33107761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]