BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37166045)

  • 1. Fully automated measurement of intracranial CSF and brain parenchyma volumes in pediatric hydrocephalus by segmentation of clinical MRI studies.
    Russo C; Pirozzi MA; Mazio F; Cascone D; Cicala D; De Liso M; Nastro A; Covelli EM; Cinalli G; Quarantelli M
    Med Phys; 2023 Dec; 50(12):7921-7933. PubMed ID: 37166045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods.
    van der Kleij LA; de Bresser J; Hendrikse J; Siero JCW; Petersen ET; De Vis JB
    PLoS One; 2018; 13(4):e0196119. PubMed ID: 29672584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volumetric brain analysis in neurosurgery: Part 1. Particle filter segmentation of brain and cerebrospinal fluid growth dynamics from MRI and CT images.
    Mandell JG; Langelaan JW; Webb AG; Schiff SJ
    J Neurosurg Pediatr; 2015 Feb; 15(2):113-24. PubMed ID: 25431902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic volumetry of cerebrospinal fluid and brain volume in severe paediatric hydrocephalus, implementation and clinical course after intervention.
    Grimm F; Edl F; Gugel I; Kerscher SR; Bender B; Schuhmann MU
    Acta Neurochir (Wien); 2020 Jan; 162(1):23-30. PubMed ID: 31768752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Meningioma Segmentation in Multiparametric MRI : Comparable Effectiveness of a Deep Learning Model and Manual Segmentation.
    Laukamp KR; Pennig L; Thiele F; Reimer R; Görtz L; Shakirin G; Zopfs D; Timmer M; Perkuhn M; Borggrefe J
    Clin Neuroradiol; 2021 Jun; 31(2):357-366. PubMed ID: 32060575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus.
    Quon JL; Han M; Kim LH; Koran ME; Chen LC; Lee EH; Wright J; Ramaswamy V; Lober RM; Taylor MD; Grant GA; Cheshier SH; Kestle JRW; Edwards MSB; Yeom KW
    J Neurosurg Pediatr; 2020 Dec; 27(2):131-138. PubMed ID: 33260138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic MRI-based Three-dimensional Models of Hip Cartilage Provide Improved Morphologic and Biochemical Analysis.
    Schmaranzer F; Helfenstein R; Zeng G; Lerch TD; Novais EN; Wylie JD; Kim YJ; Siebenrock KA; Tannast M; Zheng G
    Clin Orthop Relat Res; 2019 May; 477(5):1036-1052. PubMed ID: 30998632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A polynomial regression-based approach to estimate relaxation rate maps suitable for multiparametric segmentation of clinical brain MRI studies in multiple sclerosis.
    Pirozzi MA; Tranfa M; Tortora M; Lanzillo R; Brescia Morra V; Brunetti A; Alfano B; Quarantelli M
    Comput Methods Programs Biomed; 2022 Aug; 223():106957. PubMed ID: 35772230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
    Maranzano J; Dadar M; Zhernovaia M; Arnold DL; Collins DL; Narayanan S
    Neuroimage; 2020 Jun; 213():116690. PubMed ID: 32119987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated CT-based segmentation and quantification of total intracranial volume.
    Aguilar C; Edholm K; Simmons A; Cavallin L; Muller S; Skoog I; Larsson EM; Axelsson R; Wahlund LO; Westman E
    Eur Radiol; 2015 Nov; 25(11):3151-60. PubMed ID: 25875287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validated automatic brain extraction of head CT images.
    Muschelli J; Ullman NL; Mould WA; Vespa P; Hanley DF; Crainiceanu CM
    Neuroimage; 2015 Jul; 114():379-85. PubMed ID: 25862260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry.
    Lemieux L; Hammers A; Mackinnon T; Liu RS
    Magn Reson Med; 2003 May; 49(5):872-84. PubMed ID: 12704770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative MRI for Rapid and User-Independent Monitoring of Intracranial CSF Volume in Hydrocephalus.
    Virhammar J; Warntjes M; Laurell K; Larsson EM
    AJNR Am J Neuroradiol; 2016 May; 37(5):797-801. PubMed ID: 26705322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation?
    Egger C; Opfer R; Wang C; Kepp T; Sormani MP; Spies L; Barnett M; Schippling S
    Neuroimage Clin; 2017; 13():264-270. PubMed ID: 28018853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using modulated and smoothed data improves detectability of volume difference in group comparison, but reduces accuracy with atlas-based volumetry using Statistical Parametric Mapping 12 software.
    Goto M; Murata S; Hori M; Nemoto K; Kamatgata K; Aoki S; Abe O; Sakamoto H; Sakano Y; Kyogoku S; Daida H
    Acta Radiol; 2022 Jun; 63(6):814-821. PubMed ID: 34279134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and bias of automatic hippocampal segmentation in children and adolescents.
    Herten A; Konrad K; Krinzinger H; Seitz J; von Polier GG
    Brain Struct Funct; 2019 Mar; 224(2):795-810. PubMed ID: 30511334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images.
    Shan ZY; Yue GH; Liu JZ
    Neuroimage; 2002 Nov; 17(3):1587-98. PubMed ID: 12414297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine.
    Perkuhn M; Stavrinou P; Thiele F; Shakirin G; Mohan M; Garmpis D; Kabbasch C; Borggrefe J
    Invest Radiol; 2018 Nov; 53(11):647-654. PubMed ID: 29863600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.