These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37166045)

  • 21. Improving diagnosis accuracy of brain volume abnormalities during childhood with an automated MP2RAGE-based MRI brain segmentation.
    Serru M; Marechal B; Kober T; Ribier L; Sembely Taveau C; Sirinelli D; Cottier JP; Morel B
    J Neuroradiol; 2021 Jun; 48(4):259-265. PubMed ID: 31400431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: Evaluation of a novel lateral ventricle segmentation method.
    Kempton MJ; Underwood TS; Brunton S; Stylios F; Schmechtig A; Ettinger U; Smith MS; Lovestone S; Crum WR; Frangou S; Williams SC; Simmons A
    Neuroimage; 2011 Oct; 58(4):1051-9. PubMed ID: 21835253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NigraNet: An automatic framework to assess nigral neuromelanin content in early Parkinson's disease using convolutional neural network.
    Gaurav R; Valabrègue R; Yahia-Chérif L; Mangone G; Narayanan S; Arnulf I; Vidailhet M; Corvol JC; Lehéricy S
    Neuroimage Clin; 2022; 36():103250. PubMed ID: 36451356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated MRI segmentation for individualized modeling of current flow in the human head.
    Huang Y; Dmochowski JP; Su Y; Datta A; Rorden C; Parra LC
    J Neural Eng; 2013 Dec; 10(6):066004. PubMed ID: 24099977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated joint skull-stripping and segmentation with Multi-Task U-Net in large mouse brain MRI databases.
    De Feo R; Shatillo A; Sierra A; Valverde JM; Gröhn O; Giove F; Tohka J
    Neuroimage; 2021 Apr; 229():117734. PubMed ID: 33454412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparative study of segmentation techniques for the quantification of brain subcortical volume.
    Akudjedu TN; Nabulsi L; Makelyte M; Scanlon C; Hehir S; Casey H; Ambati S; Kenney J; O'Donoghue S; McDermott E; Kilmartin L; Dockery P; McDonald C; Hallahan B; Cannon DM
    Brain Imaging Behav; 2018 Dec; 12(6):1678-1695. PubMed ID: 29442273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI.
    Meier DS; Guttmann CRG; Tummala S; Moscufo N; Cavallari M; Tauhid S; Bakshi R; Weiner HL
    J Neuroimaging; 2018 Jan; 28(1):36-47. PubMed ID: 29235194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hippocampus and amygdala volumes from magnetic resonance images in children: Assessing accuracy of FreeSurfer and FSL against manual segmentation.
    Schoemaker D; Buss C; Head K; Sandman CA; Davis EP; Chakravarty MM; Gauthier S; Pruessner JC
    Neuroimage; 2016 Apr; 129():1-14. PubMed ID: 26824403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fully automated prostate segmentation on MRI: comparison with manual segmentation methods and specimen volumes.
    Turkbey B; Fotin SV; Huang RJ; Yin Y; Daar D; Aras O; Bernardo M; Garvey BE; Weaver J; Haldankar H; Muradyan N; Merino MJ; Pinto PA; Periaswamy S; Choyke PL
    AJR Am J Roentgenol; 2013 Nov; 201(5):W720-9. PubMed ID: 24147502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Planar single plane area determination is a viable substitute for total volumetry of CSF and brain in childhood hydrocephalus.
    Grimm F; Edl F; Gugel I; Kerscher SR; Schuhmann MU
    Acta Neurochir (Wien); 2020 May; 162(5):993-1000. PubMed ID: 31834503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thalamus Optimized Multi Atlas Segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI.
    Su JH; Thomas FT; Kasoff WS; Tourdias T; Choi EY; Rutt BK; Saranathan M
    Neuroimage; 2019 Jul; 194():272-282. PubMed ID: 30894331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks.
    Reddick WE; Glass JO; Cook EN; Elkin TD; Deaton RJ
    IEEE Trans Med Imaging; 1997 Dec; 16(6):911-8. PubMed ID: 9533591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dynamics of brain and cerebrospinal fluid growth in normal versus hydrocephalic mice.
    Mandell JG; Neuberger T; Drapaca CS; Webb AG; Schiff SJ
    J Neurosurg Pediatr; 2010 Jul; 6(1):1-10. PubMed ID: 20593980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy of skull stripping in a single-contrast convolutional neural network model using eight-contrast magnetic resonance images.
    Goto M; Otsuka Y; Hagiwara A; Fujita S; Hori M; Kamagata K; Aoki S; Abe O; Sakamoto H; Sakano Y; Kyogoku S; Daida H
    Radiol Phys Technol; 2023 Sep; 16(3):373-383. PubMed ID: 37291372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative Synthetic MRI in Children: Normative Intracranial Tissue Segmentation Values during Development.
    McAllister A; Leach J; West H; Jones B; Zhang B; Serai S
    AJNR Am J Neuroradiol; 2017 Dec; 38(12):2364-2372. PubMed ID: 28982788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diagnostic performance of heavily T2-weighted techniques in obstructive hydrocephalus: comparison study of two different 3D heavily T2-weighted and conventional T2-weighted sequences.
    Ucar M; Tokgoz N; Damar C; Alimli AG; Oncu F
    Jpn J Radiol; 2015 Feb; 33(2):94-101. PubMed ID: 25559932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.
    Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images.
    Jain S; Sima DM; Ribbens A; Cambron M; Maertens A; Van Hecke W; De Mey J; Barkhof F; Steenwijk MD; Daams M; Maes F; Van Huffel S; Vrenken H; Smeets D
    Neuroimage Clin; 2015; 8():367-75. PubMed ID: 26106562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy of automated amygdala MRI segmentation approaches in Huntington's disease in the IMAGE-HD cohort.
    Alexander B; Georgiou-Karistianis N; Beare R; Ahveninen LM; Lorenzetti V; Stout JC; Glikmann-Johnston Y
    Hum Brain Mapp; 2020 May; 41(7):1875-1888. PubMed ID: 32034838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.