These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1007 related articles for article (PubMed ID: 37166054)
21. Tinocordiside from Balkrishna A; Pokhrel S; Varshney A Comb Chem High Throughput Screen; 2021; 24(10):1795-1802. PubMed ID: 33172372 [TBL] [Abstract][Full Text] [Related]
22. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. Cao W; Dong C; Kim S; Hou D; Tai W; Du L; Im W; Zhang XF Biophys J; 2021 Mar; 120(6):1011-1019. PubMed ID: 33607086 [TBL] [Abstract][Full Text] [Related]
23. Variations in Cell Surface ACE2 Levels Alter Direct Binding of SARS-CoV-2 Spike Protein and Viral Infectivity: Implications for Measuring Spike Protein Interactions with Animal ACE2 Orthologs. Kazemi S; López-Muñoz AD; Hollý J; Jin L; Yewdell JW; Dolan BP J Virol; 2022 Sep; 96(17):e0025622. PubMed ID: 36000847 [TBL] [Abstract][Full Text] [Related]
24. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: insights from computational studies. Jena AB; Kanungo N; Nayak V; Chainy GBN; Dandapat J Sci Rep; 2021 Jan; 11(1):2043. PubMed ID: 33479401 [TBL] [Abstract][Full Text] [Related]
25. Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor. Veeramachaneni GK; Thunuguntla VBSC; Bobbillapati J; Bondili JS J Biomol Struct Dyn; 2021 Jul; 39(11):4015-4025. PubMed ID: 32448098 [TBL] [Abstract][Full Text] [Related]
26. Structural characteristics of BtKY72 RBD bound to bat ACE2 reveal multiple key residues affecting ACE2 usage of sarbecoviruses. Su C; He J; Wang L; Hu Y; Cao J; Bai B; Qi J; Gao GF; Yang M; Wang Q mBio; 2024 Sep; 15(9):e0140424. PubMed ID: 39082798 [TBL] [Abstract][Full Text] [Related]
27. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Tai W; He L; Zhang X; Pu J; Voronin D; Jiang S; Zhou Y; Du L Cell Mol Immunol; 2020 Jun; 17(6):613-620. PubMed ID: 32203189 [TBL] [Abstract][Full Text] [Related]
28. Kobophenol A Inhibits Binding of Host ACE2 Receptor with Spike RBD Domain of SARS-CoV-2, a Lead Compound for Blocking COVID-19. Gangadevi S; Badavath VN; Thakur A; Yin N; De Jonghe S; Acevedo O; Jochmans D; Leyssen P; Wang K; Neyts J; Yujie T; Blum G J Phys Chem Lett; 2021 Feb; 12(7):1793-1802. PubMed ID: 33577324 [TBL] [Abstract][Full Text] [Related]
29. Identification of potential SARS-CoV-2 entry inhibitors by targeting the interface region between the spike RBD and human ACE2. Gurung AB; Ali MA; Lee J; Farah MA; Al-Anazi KM J Infect Public Health; 2021 Feb; 14(2):227-237. PubMed ID: 33493919 [TBL] [Abstract][Full Text] [Related]
30. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Othman H; Bouslama Z; Brandenburg JT; da Rocha J; Hamdi Y; Ghedira K; Srairi-Abid N; Hazelhurst S Biochem Biophys Res Commun; 2020 Jun; 527(3):702-708. PubMed ID: 32410735 [TBL] [Abstract][Full Text] [Related]
31. Immunoglobulin yolk targeting spike 1, receptor binding domain of spike glycoprotein and nucleocapsid of SARS-CoV-2 blocking RBD-ACE2 binding interaction. Eka Saputri M; Aisyah Rahmalia Effendi S; Nadila R; Azzam Fajar S; Damajanti Soejoedono R; Handharyani E; Nadia Poetri O Int Immunopharmacol; 2022 Nov; 112():109280. PubMed ID: 36183680 [TBL] [Abstract][Full Text] [Related]
32. Identification of potential plant bioactive as SARS-CoV-2 Spike protein and human ACE2 fusion inhibitors. Singh R; Bhardwaj VK; Sharma J; Kumar D; Purohit R Comput Biol Med; 2021 Sep; 136():104631. PubMed ID: 34273770 [TBL] [Abstract][Full Text] [Related]
33. Identifying compounds that prevent the binding of the SARS-CoV-2 S-protein to ACE2. Benítez-Cardoza CG; Vique-Sánchez JL Comput Biol Med; 2021 Sep; 136():104719. PubMed ID: 34358993 [TBL] [Abstract][Full Text] [Related]
35. Rationally Designed ACE2-Derived Peptides Inhibit SARS-CoV-2. Larue RC; Xing E; Kenney AD; Zhang Y; Tuazon JA; Li J; Yount JS; Li PK; Sharma A Bioconjug Chem; 2021 Jan; 32(1):215-223. PubMed ID: 33356169 [TBL] [Abstract][Full Text] [Related]
36. Molecular insights into the binding variance of the SARS-CoV-2 spike with human, cat and dog ACE2 proteins. Zang Y; Li X; Zhao Y; Wang H; Hao D; Zhang L; Yang Z; Yuan X; Zhang S Phys Chem Chem Phys; 2021 Jun; 23(24):13752-13759. PubMed ID: 34132301 [TBL] [Abstract][Full Text] [Related]
37. Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent. Basit A; Ali T; Rehman SU J Biomol Struct Dyn; 2021 Jul; 39(10):3605-3614. PubMed ID: 32396773 [TBL] [Abstract][Full Text] [Related]
38. High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity. Lu J; Sun PD J Biol Chem; 2020 Dec; 295(52):18579-18588. PubMed ID: 33122196 [TBL] [Abstract][Full Text] [Related]
39. The spike-ACE2 binding assay: An in vitro platform for evaluating vaccination efficacy and for screening SARS-CoV-2 inhibitors and neutralizing antibodies. Zhang S; Gao C; Das T; Luo S; Tang H; Yao X; Cho CY; Lv J; Maravillas K; Jones V; Chen X; Huang R J Immunol Methods; 2022 Apr; 503():113244. PubMed ID: 35218866 [TBL] [Abstract][Full Text] [Related]
40. An Active Site Inhibitor Induces Conformational Penalties for ACE2 Recognition by the Spike Protein of SARS-CoV-2. Williams-Noonan BJ; Todorova N; Kulkarni K; Aguilar MI; Yarovsky I J Phys Chem B; 2021 Mar; 125(10):2533-2550. PubMed ID: 33657325 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]