BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37166066)

  • 1. Heterojunction Engineering Enhanced Self-Polarization of PVDF/CsPbBr
    Xue Y; Yang T; Zheng Y; Wang K; Wang E; Wang H; Zhu L; Du Z; Wang H; Chou KC; Hou X
    Adv Sci (Weinh); 2023 Jun; 10(18):e2300650. PubMed ID: 37166066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced piezoelectric response in BTO NWs-PVDF composite through tuning of polar phase content.
    Hazra S; Ghatak A; Ghosh A; Sengupta S; Raychaudhuri AK; Ghosh B
    Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36301677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Flexible Piezoelectric Nanogenerator Based on Electrospun PVDF-BaTiO
    Athira BS; George A; Vaishna Priya K; Hareesh US; Gowd EB; Surendran KP; Chandran A
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44239-44250. PubMed ID: 36129836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano PDA@Tur-Modified Piezoelectric Sensors for Enhanced Sensitivity and Energy Harvesting.
    Yang R; Ma Y; Cui J; Liu M; Wu Y; Zheng H
    ACS Sens; 2024 Jun; 9(6):3137-3149. PubMed ID: 38812068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Piezoelectric Nanogenerator of BTO-PVDF Nanofibers for Wearable Sensing.
    Jiang J; Wan L; Li L; Li P
    Macromol Rapid Commun; 2024 Mar; 45(6):e2300619. PubMed ID: 38232954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Flexible Piezoelectric Nanogenerator Assisted by a Three-phase PVDF/WS2/rGO Nanocomposite.
    Mondal A; Faraz M; Singh HH; Khare N
    Nanotechnology; 2024 Jul; ():. PubMed ID: 38949268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porosity Modulated High-Performance Piezoelectric Nanogenerator Based on Organic/Inorganic Nanomaterials for Self-Powered Structural Health Monitoring.
    Rana MM; Khan AA; Huang G; Mei N; Saritas R; Wen B; Zhang S; Voss P; Abdel-Rahman E; Leonenko Z; Islam S; Ban D
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47503-47512. PubMed ID: 32969216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ti
    Li M; Zhu W; Li X; Xu H; Fan X; Wu H; Ye F; Xue J; Li X; Cheng L; Zhang L
    Adv Sci (Weinh); 2022 May; 9(16):e2201118. PubMed ID: 35481671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide Temperature All-Solid-State Ti
    He J; Ma F; Xu W; He X; Li Q; Sun J; Jiang R; Lei Z; Liu ZH
    Adv Sci (Weinh); 2024 Feb; 11(7):e2305991. PubMed ID: 38087938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur Vacancy and Ti
    Su T; Men C; Chen L; Chu B; Luo X; Ji H; Chen J; Qin Z
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103715. PubMed ID: 34806327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing piezoelectric effect of PVDF electrospun fiber through NiO nanoparticles for wearable applications.
    Amrutha B; Anand Prabu A; Pathak M
    Heliyon; 2024 Apr; 10(7):e29192. PubMed ID: 38601609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humidity Sustainable Hydrophobic Poly(vinylidene fluoride)-Carbon Nanotubes Foam Based Piezoelectric Nanogenerator.
    Badatya S; Bharti DK; Sathish N; Srivastava AK; Gupta MK
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27245-27254. PubMed ID: 34096257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halide Tunablility Leads to Enhanced Biomechanical Energy Harvesting in Lead-Free Cs
    Paul T; Sahoo A; Maiti S; Gavali DS; Thapa R; Banerjee R
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34726-34741. PubMed ID: 37440167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Battery-Type and Pseudocapacitive Charge Storage in Ag/Ti
    Liang M; Wang L; Presser V; Dai X; Yu F; Ma J
    Adv Sci (Weinh); 2020 Sep; 7(18):e2000621. PubMed ID: 34437769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization- and Electrode-Optimized Polyvinylidene Fluoride Films for Harsh Environmental Piezoelectric Nanogenerator Applications.
    Jin DW; Ko YJ; Ahn CW; Hur S; Lee TK; Jeong DG; Lee M; Kang CY; Jung JH
    Small; 2021 Apr; 17(14):e2007289. PubMed ID: 33705597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Piezoelectric Output Performance of the SnS
    Cao VA; Kim M; Hu W; Lee S; Youn S; Chang J; Chang HS; Nah J
    ACS Nano; 2021 Jun; 15(6):10428-10436. PubMed ID: 34014067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Energy Harvesting Ability of Single-Layer Binary Fiber Nanocomposite Membrane for Multifunctional Wearable Hybrid Piezoelectric and Triboelectric Nanogenerator and Self-Powered Sensors.
    Huang A; Zhu Y; Peng S; Tan B; Peng X
    ACS Nano; 2024 Jan; 18(1):691-702. PubMed ID: 38147828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper Phosphide Nanostructures Covalently Modified Ti
    Zhong J; Li J
    Small; 2024 Mar; 20(9):e2306241. PubMed ID: 37857592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal oxide nanocomposite based flexible nanogenerator: synergic effect of light and pressure.
    Ngadong S; Chekke T; Narzary R; Bayan S; Das U
    Nanotechnology; 2022 Nov; 34(4):. PubMed ID: 36240725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior piezoelectric performance of chemically synthesized transition metal dichalcogenide heterostructures for self-powered flexible piezoelectric nanogenerator.
    Bhattacharya D; Mukherjee S; Mitra RK; Ray SK
    Nanotechnology; 2023 Aug; 34(43):. PubMed ID: 37478833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.