These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37166066)
61. Flexible, Hybrid Piezoelectric Film (BaTi(1-x)Zr(x)O3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor. Alluri NR; Saravanakumar B; Kim SJ ACS Appl Mater Interfaces; 2015 May; 7(18):9831-40. PubMed ID: 25901640 [TBL] [Abstract][Full Text] [Related]
62. Controllable Core-Shell BaTiO Zhou Z; Zhang Z; Zhang Q; Yang H; Zhu Y; Wang Y; Chen L ACS Appl Mater Interfaces; 2020 Jan; 12(1):1567-1576. PubMed ID: 31814405 [TBL] [Abstract][Full Text] [Related]
63. Ionic Liquid-Assisted 3D Printing of Self-Polarized β-PVDF for Flexible Piezoelectric Energy Harvesting. Liu X; Shang Y; Zhang J; Zhang C ACS Appl Mater Interfaces; 2021 Mar; 13(12):14334-14341. PubMed ID: 33729751 [TBL] [Abstract][Full Text] [Related]
64. Interfacial Covalent Bonding Endowing Ti Wang H; Song X; Lv M; Jin S; Xu J; Kong X; Li X; Liu Z; Chang X; Sun W; Zheng J; Li X Small; 2022 Jan; 18(3):e2104293. PubMed ID: 34738716 [TBL] [Abstract][Full Text] [Related]
65. Combined Triboelectric and Piezoelectric Effect in ZnO/PVDF Hybrid-Based Fiber-Structured Nanogenerator with PDMS:Carbon Black Electrodes. Thakur VN; Han JI Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297991 [TBL] [Abstract][Full Text] [Related]
66. Efficient Self-Assembly Preparation of 3D Carbon-Supported Ti Huang W; Ma Z; Zhong L; Luo K; Li W; Zhong S; Yan D Small; 2024 Feb; 20(6):e2304690. PubMed ID: 37794605 [TBL] [Abstract][Full Text] [Related]
67. Powering the Future: Unleashing the Potential of MXene-Based Dual-Functional Photoactive Cathodes in Photo-Rechargeable Zinc-Ion Capacitor. Azadmanjiri J; Regner J; Děkanovský L; Wu B; Luxa J; Sofer Z Small; 2024 Mar; 20(10):e2305972. PubMed ID: 37880906 [TBL] [Abstract][Full Text] [Related]
68. Efficiently Fabricated Core-Sheath Piezoelectric Sensor Based on PVDF Microfibrillar Bundle. Shi J; Peng F; Shan T; Guo J; Gao C; Zheng G Macromol Rapid Commun; 2024 Sep; ():e2400616. PubMed ID: 39240251 [TBL] [Abstract][Full Text] [Related]
69. Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output. Fakhri P; Amini B; Bagherzadeh R; Kashfi M; Latifi M; Yavari N; Asadi Kani S; Kong L RSC Adv; 2019 Mar; 9(18):10117-10123. PubMed ID: 35520929 [TBL] [Abstract][Full Text] [Related]
70. Er Hoque NA; Thakur P; Roy S; Kool A; Bagchi B; Biswas P; Saikh MM; Khatun F; Das S; Ray PP ACS Appl Mater Interfaces; 2017 Jul; 9(27):23048-23059. PubMed ID: 28613807 [TBL] [Abstract][Full Text] [Related]
71. Mechanically Ultra-Robust, Elastic, Conductive, and Multifunctional Hybrid Hydrogel for a Triboelectric Nanogenerator and Flexible/Wearable Sensor. Long Y; Wang Z; Xu F; Jiang B; Xiao J; Yang J; Wang ZL; Hu W Small; 2022 Nov; 18(47):e2203956. PubMed ID: 36228096 [TBL] [Abstract][Full Text] [Related]
72. Electrospinning of Flexible Poly(vinyl alcohol)/MXene Nanofiber-Based Humidity Sensor Self-Powered by Monolayer Molybdenum Diselenide Piezoelectric Nanogenerator. Wang D; Zhang D; Li P; Yang Z; Mi Q; Yu L Nanomicro Lett; 2021 Jan; 13(1):57. PubMed ID: 34138242 [TBL] [Abstract][Full Text] [Related]
73. Morphological interference of two different cobalt oxides derived from a hydrothermal protocol and a single two-dimensional metal organic framework precursor to stabilize the β-phase of PVDF for flexible piezoelectric nanogenerators. Ojha S; Paria S; Karan SK; Si SK; Maitra A; Das AK; Halder L; Bera A; De A; Khatua BB Nanoscale; 2019 Dec; 11(47):22989-22999. PubMed ID: 31769775 [TBL] [Abstract][Full Text] [Related]
74. Triboelectric Nanogenerator-Based Near-Field Electrospinning System for Optimizing PVDF Fibers with High Piezoelectric Performance. Guo Y; Zhang H; Zhong Y; Shi S; Wang Z; Wang P; Zhao Y ACS Appl Mater Interfaces; 2023 Feb; 15(4):5242-5252. PubMed ID: 36661114 [TBL] [Abstract][Full Text] [Related]
75. Development of a Sustainable and Biodegradable Sarkar D; Das N; Saikh MM; Biswas P; Das S; Das S; Hoque NA; Basu R ACS Omega; 2021 Nov; 6(43):28710-28717. PubMed ID: 34746565 [TBL] [Abstract][Full Text] [Related]
76. Highly Dispersed Ru Nanoparticles on Boron-Doped Ti Bat-Erdene M; Batmunkh M; Sainbileg B; Hayashi M; Bati ASR; Qin J; Zhao H; Zhong YL; Shapter JG Small; 2021 Sep; 17(38):e2102218. PubMed ID: 34411421 [TBL] [Abstract][Full Text] [Related]
77. Intralayered Ostwald Ripening-Induced Self-Catalyzed Growth of CNTs on MXene for Robust Lithium-Sulfur Batteries. Xu M; Liang L; Qi J; Wu T; Zhou D; Xiao Z Small; 2021 Apr; 17(17):e2007446. PubMed ID: 33733628 [TBL] [Abstract][Full Text] [Related]
78. Flexible, Transparent, and Wafer-Scale Artificial Synapse Array Based on TiO Huang J; Yang S; Tang X; Yang L; Chen W; Chen Z; Li X; Zeng Z; Tang Z; Gui X Adv Mater; 2023 Aug; 35(33):e2303737. PubMed ID: 37339620 [TBL] [Abstract][Full Text] [Related]
79. Surface Functional Groups and Electrochemical Behavior in Dimethyl Sulfoxide-Delaminated Ti Qian A; Seo JY; Shi H; Lee JY; Chung CH ChemSusChem; 2018 Nov; 11(21):3719-3723. PubMed ID: 30180299 [TBL] [Abstract][Full Text] [Related]
80. Waste cotton textile-derived cellulose composite porous film with enhanced piezoelectric performance for energy harvesting and self-powered sensing. Pan L; Wang Y; Jin Q; Luo Y; Zhou Z; Zhu M Carbohydr Polym; 2024 Dec; 346():122607. PubMed ID: 39245491 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]