These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37166070)

  • 21. Coupling between structural relaxation and diffusion in glass-forming liquids under pressure variation.
    Phan AD; Koperwas K; Paluch M; Wakabayashi K
    Phys Chem Chem Phys; 2020 Nov; 22(42):24365-24371. PubMed ID: 33084661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inherent-state melting and the onset of glassy dynamics in two-dimensional supercooled liquids.
    Fraggedakis D; Hasyim MR; Mandadapu KK
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2209144120. PubMed ID: 37000846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facilitation, complexity growth, mode coupling, and activated dynamics in supercooled liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16077-82. PubMed ID: 18927234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glassy dynamics and kinetic vitrification of isotropic suspensions of hard rods.
    Yatsenko G; Schweizer KS
    Langmuir; 2008 Jul; 24(14):7474-84. PubMed ID: 18547074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of shape on the glassy dynamics of hard nonspherical particle fluids. II. Barriers, relaxation, fragility, kinetic vitrification, and universality.
    Tripathy M; Schweizer KS
    J Chem Phys; 2009 Jun; 130(24):244907. PubMed ID: 19566181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental test of a predicted dynamics-structure-thermodynamics connection in molecularly complex glass-forming liquids.
    Mei B; Zhou Y; Schweizer KS
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33903245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tracer Diffusion in Tightly-Meshed Homogeneous Polymer Networks: A Brownian Dynamics Simulation Study.
    Cho HW; Kim H; Sung BJ; Kim JS
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hopping of water in a glassy polymer studied via transition path sampling and likelihood maximization.
    Xi L; Shah M; Trout BL
    J Phys Chem B; 2013 Apr; 117(13):3634-47. PubMed ID: 23477660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Boiling temperature as a scaling parameter for the microscopic relaxation dynamics in molecular liquids.
    Mamontov E
    J Phys Chem B; 2013 Aug; 117(32):9501-7. PubMed ID: 23869489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films.
    Mirigian S; Schweizer KS
    J Chem Phys; 2015 Dec; 143(24):244705. PubMed ID: 26723700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling changes in glass transition temperature in polymer matrices exposed to low molecular weight penetrants.
    Baldanza A; Loianno V; Mensitieri G; Scherillo G
    Philos Trans A Math Phys Eng Sci; 2023 Jan; 381(2240):20210216. PubMed ID: 36403634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracer Transport Probes Relaxation and Structure of Attractive and Repulsive Glassy Liquids.
    Roberts RC; Poling-Skutvik R; Palmer JC; Conrad JC
    J Phys Chem Lett; 2018 Jun; 9(11):3008-3013. PubMed ID: 29763547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revealing spatially heterogeneous relaxation in a model nanocomposite.
    Cheng S; Mirigian S; Carrillo JM; Bocharova V; Sumpter BG; Schweizer KS; Sokolov AP
    J Chem Phys; 2015 Nov; 143(19):194704. PubMed ID: 26590550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bridging the gap between the mode coupling and the random first order transition theories of structural relaxation in liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031509. PubMed ID: 16241446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling and decoupling between translational and rotational dynamics in supercooled monodisperse soft Janus particles.
    Zou QZ; Li ZW; Zhu YL; Sun ZY
    Soft Matter; 2019 Apr; 15(16):3343-3352. PubMed ID: 30951070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activated relaxation in supercooled monodisperse atomic and polymeric WCA fluids: Simulation and ECNLE theory.
    Zhou Y; Mei B; Schweizer KS
    J Chem Phys; 2022 Mar; 156(11):114901. PubMed ID: 35317582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local glass transition temperature T
    Baglay RR; Roth CB
    J Chem Phys; 2017 May; 146(20):203307. PubMed ID: 28571380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-monotonic effect of confinement on the glass transition.
    Varnik F; Franosch T
    J Phys Condens Matter; 2016 Apr; 28(13):133001. PubMed ID: 26940539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solvation dynamics and electric field relaxation in an imidazolium-PF6 ionic liquid: from room temperature to the glass transition.
    Ito N; Richert R
    J Phys Chem B; 2007 May; 111(18):5016-22. PubMed ID: 17474705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coarse-grained molecular dynamics simulation of activated penetrant transport in glassy polymers.
    Zhang K; Meng D; Müller-Plathe F; Kumar SK
    Soft Matter; 2018 Jan; 14(3):440-447. PubMed ID: 29261207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.