These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37166130)
1. hACE2-Induced Allosteric Activation in SARS-CoV versus SARS-CoV-2 Spike Assemblies Revealed by Structural Dynamics. Chen C; Zhu R; Hodge EA; Díaz-Salinas MA; Nguyen A; Munro JB; Lee KK ACS Infect Dis; 2023 Jun; 9(6):1180-1189. PubMed ID: 37166130 [TBL] [Abstract][Full Text] [Related]
2. Site Density Functional Theory and Structural Bioinformatics Analysis of the SARS-CoV Spike Protein and hACE2 Complex. Kumawat N; Tucs A; Bera S; Chuev GN; Valiev M; Fedotova MV; Kruchinin SE; Tsuda K; Sljoka A; Chakraborty A Molecules; 2022 Jan; 27(3):. PubMed ID: 35164065 [TBL] [Abstract][Full Text] [Related]
3. Hot spot profiles of SARS-CoV-2 and human ACE2 receptor protein protein interaction obtained by density functional tight binding fragment molecular orbital method. Lim H; Baek A; Kim J; Kim MS; Liu J; Nam KY; Yoon J; No KT Sci Rep; 2020 Oct; 10(1):16862. PubMed ID: 33033344 [TBL] [Abstract][Full Text] [Related]
5. Molecular basis for higher affinity of SARS-CoV-2 spike RBD for human ACE2 receptor. Delgado JM; Duro N; Rogers DM; Tkatchenko A; Pandit SA; Varma S Proteins; 2021 Sep; 89(9):1134-1144. PubMed ID: 33864655 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of molecular interaction, physicochemical parameters and conserved pattern of SARS-CoV-2 Spike RBD and hACE2: in silico and molecular dynamics approach. Chakraborty C; Sharma AR; Mallick B; Bhattacharya M; Sharma G; Lee SS Eur Rev Med Pharmacol Sci; 2021 Feb; 25(3):1708-1723. PubMed ID: 33629340 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the Role of N-Linked Glycosylation in Cell Surface Expression, Function, and Binding Properties of SARS-CoV-2 Receptor ACE2. Rowland R; Brandariz-Nuñez A Microbiol Spectr; 2021 Oct; 9(2):e0119921. PubMed ID: 34494876 [TBL] [Abstract][Full Text] [Related]
8. SARS-CoV-2 Variants Increase Kinetic Stability of Open Spike Conformations as an Evolutionary Strategy. Yang Z; Han Y; Ding S; Shi W; Zhou T; Finzi A; Kwong PD; Mothes W; Lu M mBio; 2021 Feb; 13(1):e0322721. PubMed ID: 35164561 [TBL] [Abstract][Full Text] [Related]
9. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. Hörnich BF; Großkopf AK; Schlagowski S; Tenbusch M; Kleine-Weber H; Neipel F; Stahl-Hennig C; Hahn AS J Virol; 2021 Apr; 95(9):. PubMed ID: 33608407 [TBL] [Abstract][Full Text] [Related]
10. Computational studies evidenced the potential of steroidal lactone to disrupt surface interaction of SARS-CoV-2 spike protein and hACE2. Yadav A; Ojha MD; Hariprasad P Comput Biol Med; 2022 Jul; 146():105598. PubMed ID: 35596971 [TBL] [Abstract][Full Text] [Related]
11. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target. Al-Zaidan L; Mestiri S; Raza A; Merhi M; Inchakalody VP; Fernandes Q; Taib N; Uddin S; Dermime S Tumour Biol; 2021; 43(1):177-196. PubMed ID: 34420993 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19). Nayak SK Mini Rev Med Chem; 2021; 21(6):689-703. PubMed ID: 33208074 [TBL] [Abstract][Full Text] [Related]
13. Why Does the Novel Coronavirus Spike Protein Interact so Strongly with the Human ACE2? A Thermodynamic Answer. de Andrade J; Gonçalves PFB; Netz PA Chembiochem; 2021 Mar; 22(5):865-875. PubMed ID: 33084150 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. Qing E; Kicmal T; Kumar B; Hawkins GM; Timm E; Perlman S; Gallagher T mBio; 2021 Aug; 12(4):e0159021. PubMed ID: 34340537 [TBL] [Abstract][Full Text] [Related]
15. Cell entry mechanisms of SARS-CoV-2. Shang J; Wan Y; Luo C; Ye G; Geng Q; Auerbach A; Li F Proc Natl Acad Sci U S A; 2020 May; 117(21):11727-11734. PubMed ID: 32376634 [TBL] [Abstract][Full Text] [Related]
16. Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics. Ose NJ; Campitelli P; Modi T; Kazan IC; Kumar S; Ozkan SB Elife; 2024 May; 12():. PubMed ID: 38713502 [TBL] [Abstract][Full Text] [Related]
17. Investigation on the interaction mechanism of different SARS-CoV-2 spike variants with hACE2: insights from molecular dynamics simulations. Wu J; Zhang HX; Zhang J Phys Chem Chem Phys; 2023 Jan; 25(3):2304-2319. PubMed ID: 36597957 [TBL] [Abstract][Full Text] [Related]
18. Design of a bifunctional pan-sarbecovirus entry inhibitor targeting the cell receptor and viral fusion protein. Jin H; Cheng L; Gong Y; Zhu Y; Chong H; Zhang Z; He Y J Virol; 2023 Aug; 97(8):e0019223. PubMed ID: 37578234 [TBL] [Abstract][Full Text] [Related]
19. COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. Mittal A; Manjunath K; Ranjan RK; Kaushik S; Kumar S; Verma V PLoS Pathog; 2020 Aug; 16(8):e1008762. PubMed ID: 32822426 [TBL] [Abstract][Full Text] [Related]
20. Improved Binding Affinity of Omicron's Spike Protein for the Human Angiotensin-Converting Enzyme 2 Receptor Is the Key behind Its Increased Virulence. Kumar R; Murugan NA; Srivastava V Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]