These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37166188)

  • 1. Capillary-driven microfluidics: impacts of 3D manufacturing on bioanalytical devices.
    Azizian P; Casals-Terré J; Ricart J; Cabot JM
    Analyst; 2023 Jun; 148(12):2657-2675. PubMed ID: 37166188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
    Olanrewaju A; Beaugrand M; Yafia M; Juncker D
    Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics.
    Hassan SU; Tariq A; Noreen Z; Donia A; Zaidi SZJ; Bokhari H; Zhang X
    Diagnostics (Basel); 2020 Jul; 10(8):. PubMed ID: 32708045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Fabrication of Capillary-Driven Flow Device for Point-Of-Care Diagnostics.
    Hassan SU; Zhang X
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32326641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lab-on-a-Disc for Point-of-Care Infection Diagnostics.
    Sunkara V; Kumar S; Sabaté Del Río J; Kim I; Cho YK
    Acc Chem Res; 2021 Oct; 54(19):3643-3655. PubMed ID: 34516092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open Microfluidic Capillary Systems.
    Berthier E; Dostie AM; Lee UN; Berthier J; Theberge AB
    Anal Chem; 2019 Jul; 91(14):8739-8750. PubMed ID: 31260266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics Based Point-of-Care Diagnostics.
    Pandey CM; Augustine S; Kumar S; Kumar S; Nara S; Srivastava S; Malhotra BD
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 29178532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How 3D printing can boost advances in analytical and bioanalytical chemistry.
    Ambrosi A; Bonanni A
    Mikrochim Acta; 2021 Jul; 188(8):265. PubMed ID: 34287702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics.
    Asci Erkocyigit B; Ozufuklar O; Yardim A; Guler Celik E; Timur S
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices.
    Park J; Han DH; Park JK
    Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CMOS-Based Electrokinetic Microfluidics With Multi-Modal Cellular and Bio-Molecular Sensing for End-to-End Point-of-Care System.
    Zhu C; Maldonado J; Sengupta K
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1250-1267. PubMed ID: 34914597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing of Monolithic Capillarity-Driven Microfluidic Devices for Diagnostics.
    Achille C; Parra-Cabrera C; Dochy R; Ordutowski H; Piovesan A; Piron P; Van Looy L; Kushwaha S; Reynaerts D; Verboven P; Nicolaï B; Lammertyn J; Spasic D; Ameloot R
    Adv Mater; 2021 Jun; 33(25):e2008712. PubMed ID: 33969565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in point-of-care technologies for molecular diagnostics.
    Zarei M
    Biosens Bioelectron; 2017 Dec; 98():494-506. PubMed ID: 28728010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.
    Beauchamp MJ; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Assembly in 3D Printed Fluidics.
    Patrick WG; Nielsen AA; Keating SJ; Levy TJ; Wang CW; Rivera JJ; Mondragón-Palomino O; Carr PA; Voigt CA; Oxman N; Kong DS
    PLoS One; 2015; 10(12):e0143636. PubMed ID: 26716448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid, maskless 3D prototyping for fabrication of capillary circuits: Toward urinary protein detection.
    Yan S; Zhu Y; Tang SY; Li Y; Zhao Q; Yuan D; Yun G; Zhang J; Zhang S; Li W
    Electrophoresis; 2018 Apr; 39(7):957-964. PubMed ID: 29292831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printed Biosensor Arrays for Medical Diagnostics.
    Sharafeldin M; Jones A; Rusling JF
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.