BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37166225)

  • 1. Detection of melanin influence on skin samples based on Raman spectroscopy and optical coherence tomography dual-modal approach.
    Wu D; Kukk AF; Roth B
    J Biophotonics; 2023 Aug; 16(8):e202300080. PubMed ID: 37166225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal system for optical biopsy of melanoma with integrated ultrasound, optical coherence tomography and Raman spectroscopy.
    Fedorov Kukk A; Wu D; Gaffal E; Panzer R; Emmert S; Roth B
    J Biophotonics; 2022 Oct; 15(10):e202200129. PubMed ID: 35802400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of combined spectral and optical tomography methods for detection of skin and lung cancers.
    Zakharov VP; Bratchenko IA; Artemyev DN; Myakinin OO; Kornilin DV; Kozlov SV; Moryatov AA
    J Biomed Opt; 2015 Feb; 20(2):25003. PubMed ID: 25652702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanin distribution from the dermal-epidermal junction to the stratum corneum: non-invasive in vivo assessment by fluorescence and Raman microspectroscopy.
    Yakimov BP; Shirshin EA; Schleusener J; Allenova AS; Fadeev VV; Darvin ME
    Sci Rep; 2020 Sep; 10(1):14374. PubMed ID: 32873804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of cellular-resolution optical coherence tomography and Raman spectroscopy for discrimination of skin cancer cells with machine learning.
    You C; Yi JY; Hsu TW; Huang SL
    J Biomed Opt; 2023 Sep; 28(9):096005. PubMed ID: 37720189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy of in vivo cutaneous melanin.
    Huang Z; Lui H; Chen XK; Alajlan A; McLean DI; Zeng H
    J Biomed Opt; 2004; 9(6):1198-205. PubMed ID: 15568940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of human melanoma and normal formalin paraffin-fixed samples using Raman and LIBS fused data.
    Khan MN; Wang Q; Idrees BS; Teng G; Xiangli W; Cui X; Wei K
    Lasers Med Sci; 2022 Jul; 37(5):2489-2499. PubMed ID: 35098374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical techniques for the noninvasive diagnosis of skin cancer.
    Calin MA; Parasca SV; Savastru R; Calin MR; Dontu S
    J Cancer Res Clin Oncol; 2013 Jul; 139(7):1083-104. PubMed ID: 23552870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin.
    Rangaraju LP; Kunapuli G; Every D; Ayala OD; Ganapathy P; Mahadevan-Jansen A
    Burns; 2019 May; 45(3):659-670. PubMed ID: 30385061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of dimethyl sulphoxide diffusion coefficient in the process of optical clearing by confocal micro-Raman spectroscopy.
    Liu P; Huang Y; Guo Z; Wang J; Zhuang Z; Liu S
    J Biomed Opt; 2013 Feb; 18(2):20507. PubMed ID: 23416924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Raman Spectroscopy to Detect and Diagnose Skin Cancer In Vivo.
    Zhao J; Zeng H; Kalia S; Lui H
    Dermatol Clin; 2017 Oct; 35(4):495-504. PubMed ID: 28886805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trimodal system for in vivo skin cancer screening with combined optical coherence tomography-Raman and colocalized optoacoustic measurements.
    Varkentin A; Mazurenka M; Blumenröther E; Behrendt L; Emmert S; Morgner U; Meinhardt-Wollweber M; Rahlves M; Roth B
    J Biophotonics; 2018 Jun; 11(6):e201700288. PubMed ID: 29360199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in tissue optical clearing for spectroscopic application.
    Sdobnov AY; Darvin ME; Genina EA; Bashkatov AN; Lademann J; Tuchin VV
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():216-229. PubMed ID: 29433855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comment on "Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning".
    Bratchenko IA; Bratchenko LA
    Artif Intell Med; 2022 Mar; 125():102252. PubMed ID: 35241262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography.
    Pires L; Demidov V; Vitkin IA; Bagnato V; Kurachi C; Wilson BC
    J Biomed Opt; 2016 Aug; 21(8):081210. PubMed ID: 27300502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coherence tomography in dermatology.
    Olsen J; Themstrup L; Jemec GB
    G Ital Dermatol Venereol; 2015 Oct; 150(5):603-15. PubMed ID: 26129683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography.
    Boone MA; Suppa M; Dhaenens F; Miyamoto M; Marneffe A; Jemec GB; Del Marmol V; Nebosis R
    Arch Dermatol Res; 2016 Jan; 308(1):7-20. PubMed ID: 26563265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection.
    Zonios G; Dimou A; Bassukas I; Galaris D; Tsolakidis A; Kaxiras E
    J Biomed Opt; 2008; 13(1):014017. PubMed ID: 18315375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding reduced Raman spectroscopy fingerprint of skin samples for melanoma diagnosis through machine learning.
    Araújo DC; Veloso AA; de Oliveira Filho RS; Giraud MN; Raniero LJ; Ferreira LM; Bitar RA
    Artif Intell Med; 2021 Oct; 120():102161. PubMed ID: 34629149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.
    Kim S; Lee SH; Min SY; Byun KM; Lee SY
    J Biomed Opt; 2017 Oct; 22(10):1-6. PubMed ID: 29027408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.