BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37166710)

  • 1. Computer-Aided Design and Production of RNA Origami as Protein Scaffolds and Biosensors.
    Vallina NS; Geary C; Jepsen M; Andersen ES
    Methods Mol Biol; 2023; 2639():51-67. PubMed ID: 37166710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-Aided Design of RNA Origami Structures.
    Sparvath SL; Geary CW; Andersen ES
    Methods Mol Biol; 2017; 1500():51-80. PubMed ID: 27813001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and Testing of RNA Origami Anticoagulants.
    Krissanaprasit A; Key C; Froehlich K; LaBean TH
    Methods Mol Biol; 2023; 2639():339-350. PubMed ID: 37166725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA origami: design, simulation and application.
    Poppleton E; Urbanek N; Chakraborty T; Griffo A; Monari L; Göpfrich K
    RNA Biol; 2023 Jan; 20(1):510-524. PubMed ID: 37498217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA nanoarchitectures: steps towards biological applications.
    Tintoré M; Eritja R; Fábrega C
    Chembiochem; 2014 Jul; 15(10):1374-90. PubMed ID: 24953971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Uniquely Addressable Bio-orthogonal Synthetic Scaffolds for DNA and RNA Origami.
    Kozyra J; Ceccarelli A; Torelli E; Lopiccolo A; Gu JY; Fellermann H; Stimming U; Krasnogor N
    ACS Synth Biol; 2017 Jul; 6(7):1140-1149. PubMed ID: 28414914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of barcode-like nucleic acid nanostructures.
    Wang P; Tian C; Li X; Mao C
    Small; 2014 Oct; 10(19):3923-6. PubMed ID: 24978689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward larger DNA origami.
    Marchi AN; Saaem I; Vogen BN; Brown S; LaBean TH
    Nano Lett; 2014 Oct; 14(10):5740-7. PubMed ID: 25179827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomechanical DNA origami pH sensors.
    Kuzuya A; Watanabe R; Yamanaka Y; Tamaki T; Kaino M; Ohya Y
    Sensors (Basel); 2014 Oct; 14(10):19329-35. PubMed ID: 25325338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An RNA Paranemic Crossover Triangle as A 3D Module for Cotranscriptional Nanoassembly.
    Sampedro Vallina N; McRae EKS; Geary C; Andersen ES
    Small; 2023 Mar; 19(13):e2204651. PubMed ID: 36526605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Origami-Enabled Biosensors.
    Wang S; Zhou Z; Ma N; Yang S; Li K; Teng C; Ke Y; Tian Y
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33287133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies.
    Bush J; Singh S; Vargas M; Oktay E; Hu CH; Veneziano R
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
    Wang P; Gaitanaros S; Lee S; Bathe M; Shih WM; Ke Y
    J Am Chem Soc; 2016 Jun; 138(24):7733-40. PubMed ID: 27224641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding DNA Origami Design Freedom with De Novo Synthesized Scaffolds.
    Wu H; Zhang T; Qin Y; Xia X; Bai T; Gu H; Wei B
    J Am Chem Soc; 2024 Jun; 146(23):16076-16084. PubMed ID: 38803270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.
    Agarwal NP; Matthies M; Joffroy B; Schmidt TL
    ACS Nano; 2018 Mar; 12(3):2546-2553. PubMed ID: 29451771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Stranded RNA Origami-Based Epigenetic Immunomodulation.
    Dai K; Gong C; Xu Y; Ding F; Qi X; Tu X; Yu L; Liu X; Li J; Fan C; Yan H; Yao G
    Nano Lett; 2023 Aug; 23(15):7188-7196. PubMed ID: 37499095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET-Mediated Observation of Protein-Triggered Conformational Changes in DNA Nanostructures.
    Shiu SC; Sakai Y; Tanner JA; Heddle JG
    Methods Mol Biol; 2021; 2208():69-80. PubMed ID: 32856256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA origami design of dolphin-shaped structures with flexible tails.
    Andersen ES; Dong M; Nielsen MM; Jahn K; Lind-Thomsen A; Mamdouh W; Gothelf KV; Besenbacher F; Kjems J
    ACS Nano; 2008 Jun; 2(6):1213-8. PubMed ID: 19206339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.