These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37167054)

  • 61. Recognition of unilateral lower limb movement based on EEG signals with ERP-PCA analysis.
    Gu L; Jiang J; Han H; Gan JQ; Wang H
    Neurosci Lett; 2023 Mar; 800():137133. PubMed ID: 36801241
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Upper limb complex movements decoding from pre-movement EEG signals using wavelet common spatial patterns.
    Mohseni M; Shalchyan V; Jochumsen M; Niazi IK
    Comput Methods Programs Biomed; 2020 Jan; 183():105076. PubMed ID: 31546195
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control.
    Tang Z; Sun S; Zhang S; Chen Y; Li C; Chen S
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918413
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Motor imagery EEG decoding using manifold embedded transfer learning.
    Cai Y; She Q; Ji J; Ma Y; Zhang J; Zhang Y
    J Neurosci Methods; 2022 Mar; 370():109489. PubMed ID: 35090904
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Lower-limb kinematic reconstruction during pedaling tasks from EEG signals using Unscented Kalman filter.
    Blanco-Díaz CF; Guerrero-Mendez CD; Delisle-Rodriguez D; de Souza AF; Badue C; Bastos-Filho TF
    Comput Methods Biomech Biomed Engin; 2024 May; 27(7):867-877. PubMed ID: 37129900
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Recognition of single upper limb motor imagery tasks from EEG using multi-branch fusion convolutional neural network.
    Zhang R; Chen Y; Xu Z; Zhang L; Hu Y; Chen M
    Front Neurosci; 2023; 17():1129049. PubMed ID: 36908782
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Upper Limb Prosthesis Control: A Hybrid EEG-EMG Scheme for Motion Estimation in Transhumeral Subjects.
    Bakshi K; Pramanik R; Manjunatha M; Kumar CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2024-2027. PubMed ID: 30440798
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Towards decoding of functional movements from the same limb using EEG.
    Shiman F; Irastorza-Landa N; Sarasola-Sanz A; Spuler M; Birbaumer N; Ramos-Murguialday A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1922-5. PubMed ID: 26736659
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Brain-Controlled Robotic Arm System Based on Multi-Directional CNN-BiLSTM Network Using EEG Signals.
    Jeong JH; Shim KH; Kim DJ; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2020 May; 28(5):1226-1238. PubMed ID: 32191894
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pseudo-online detection and classification for upper-limb movements.
    Niu J; Jiang N
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35688127
    [No Abstract]   [Full Text] [Related]  

  • 71. The Role of Artificial Intelligence in Decoding Speech from EEG Signals: A Scoping Review.
    Shah U; Alzubaidi M; Mohsen F; Abd-Alrazaq A; Alam T; Househ M
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146323
    [No Abstract]   [Full Text] [Related]  

  • 72. Source Aware Deep Learning Framework for Hand Kinematic Reconstruction Using EEG Signal.
    Pancholi S; Giri A; Jain A; Kumar L; Roy S
    IEEE Trans Cybern; 2023 Jul; 53(7):4094-4106. PubMed ID: 35533152
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Real-Time Navigation in Google Street View
    Yang L; Van Hulle MM
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772744
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Learning joint space-time-frequency features for EEG decoding on small labeled data.
    Zhao D; Tang F; Si B; Feng X
    Neural Netw; 2019 Jun; 114():67-77. PubMed ID: 30897519
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity.
    Collazos-Huertas DF; Álvarez-Meza AM; Cárdenas-Peña DA; Castaño-Duque GA; Castellanos-Domínguez CG
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904950
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Decoding fingertip trajectory from electrocorticographic signals in humans.
    Nakanishi Y; Yanagisawa T; Shin D; Chen C; Kambara H; Yoshimura N; Fukuma R; Kishima H; Hirata M; Koike Y
    Neurosci Res; 2014 Aug; 85():20-7. PubMed ID: 24880133
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Motor Imagery Classification Using Inter-Task Transfer Learning via a Channel-Wise Variational Autoencoder-Based Convolutional Neural Network.
    Lee DY; Jeong JH; Lee BH; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():226-237. PubMed ID: 35041605
    [TBL] [Abstract][Full Text] [Related]  

  • 79. EEG-based BCI system for decoding finger movements within the same hand.
    Alazrai R; Alwanni H; Daoud MI
    Neurosci Lett; 2019 Apr; 698():113-120. PubMed ID: 30630057
    [TBL] [Abstract][Full Text] [Related]  

  • 80. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.