These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 371674)
1. Cysteinyl-tRNA synthetase from Escherichia coli does not need an editing mechanism to reject serine and alanine. High binding energy of small groups in specific molecular interactions. Fersht AR; Dingwall C Biochemistry; 1979 Apr; 18(7):1245-9. PubMed ID: 371674 [TBL] [Abstract][Full Text] [Related]
2. Editing function of Escherichia coli cysteinyl-tRNA synthetase: cyclization of cysteine to cysteine thiolactone. Jakubowski H Nucleic Acids Res; 1994 Apr; 22(7):1155-60. PubMed ID: 8165127 [TBL] [Abstract][Full Text] [Related]
3. Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli. Tsui WC; Fersht AR Nucleic Acids Res; 1981 Sep; 9(18):4627-37. PubMed ID: 6117825 [TBL] [Abstract][Full Text] [Related]
4. Probing the limits of protein-amino acid side chain recognition with the aminoacyl-tRNA synthetases. Discrimination against phenylalanine by tyrosyl-tRNA synthetases. Fersht AR; Shindler JS; Tsui WC Biochemistry; 1980 Nov; 19(24):5520-4. PubMed ID: 7006687 [TBL] [Abstract][Full Text] [Related]
5. Hydrolytic editing by a class II aminoacyl-tRNA synthetase. Beuning PJ; Musier-Forsyth K Proc Natl Acad Sci U S A; 2000 Aug; 97(16):8916-20. PubMed ID: 10922054 [TBL] [Abstract][Full Text] [Related]
6. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs. Freist W; Sternbach H; Cramer F Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973 [TBL] [Abstract][Full Text] [Related]
7. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates. Kern D; Lapointe J Biochemistry; 1979 Dec; 18(26):5809-18. PubMed ID: 229901 [TBL] [Abstract][Full Text] [Related]
9. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs. Chinault AC; Tan KH; Hassur SM; Hecht SM Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826 [TBL] [Abstract][Full Text] [Related]
10. Cysteine activation in cultured cystinotic cells. The specific activity of cysteinyl-tRNA synthetase and tRNACys and the determination of the Michaelis-Menten constants for cysteinyl-tRNA synthetase. Waterson JR; Winter WP; Schmickel RD J Clin Invest; 1974 Jul; 54(1):182-7. PubMed ID: 4834888 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of cysteine-containing dipeptides by aminoacyl-tRNA synthetases. Jakubowski H Nucleic Acids Res; 1995 Nov; 23(22):4608-15. PubMed ID: 8524650 [TBL] [Abstract][Full Text] [Related]
12. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli. Jakubowski H Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4504-8. PubMed ID: 2191291 [TBL] [Abstract][Full Text] [Related]
13. Chemical modification and site-directed mutagenesis of the single cysteine in motif 3 of class II Escherichia coli prolyl-tRNA synthetase. Stehlin C; Heacock DH; Liu H; Musier-Forsyth K Biochemistry; 1997 Mar; 36(10):2932-8. PubMed ID: 9062123 [TBL] [Abstract][Full Text] [Related]
14. Metal-binding site in a class I tRNA synthetase localized to a cysteine cluster inserted into nucleotide-binding fold. Landro JA; Schimmel P Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2261-5. PubMed ID: 8460131 [TBL] [Abstract][Full Text] [Related]
15. Interactions between Escherichia coli arginyl-tRNA synthetase and its substrates. Lin SX; Wang Q; Wang YL Biochemistry; 1988 Aug; 27(17):6348-53. PubMed ID: 3064808 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic aminoacylation of tRNA acceptor stem helices with cysteine is dependent on a single nucleotide. Hamann CS; Hou YM Biochemistry; 1995 May; 34(19):6527-32. PubMed ID: 7756283 [TBL] [Abstract][Full Text] [Related]
17. Isoleucyl-tRNA synthetase inactivation and the extent of aminoacylation of tRNAIle from Escherichia coli. Marashi F; Harris CL Biochim Biophys Acta; 1977 Jul; 477(1):84-8. PubMed ID: 328047 [TBL] [Abstract][Full Text] [Related]
18. Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase. Newberry KJ; Hou YM; Perona JJ EMBO J; 2002 Jun; 21(11):2778-87. PubMed ID: 12032090 [TBL] [Abstract][Full Text] [Related]
19. Homologous trans-editing factors with broad tRNA specificity prevent mistranslation caused by serine/threonine misactivation. Liu Z; Vargas-Rodriguez O; Goto Y; Novoa EM; Ribas de Pouplana L; Suga H; Musier-Forsyth K Proc Natl Acad Sci U S A; 2015 May; 112(19):6027-32. PubMed ID: 25918376 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of cysteinyl-tRNACys by a prolyl-tRNA synthetase. Zhang CM; Hou YM RNA Biol; 2004 May; 1(1):35-41. PubMed ID: 17194940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]