BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37167731)

  • 1. Investigating the applicability of the CYP102A1-decoy-molecule system to other members of the CYP102A subfamily.
    Stanfield JK; Onoda H; Ariyasu S; Kasai C; Burfoot EM; Sugimoto H; Shoji O
    J Inorg Biochem; 2023 Aug; 245():112235. PubMed ID: 37167731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition.
    Shoji O; Aiba Y; Watanabe Y
    Acc Chem Res; 2019 Apr; 52(4):925-934. PubMed ID: 30888147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of residue 87 in substrate selectivity and regioselectivity of drug-metabolizing cytochrome P450 CYP102A1 M11.
    Vottero E; Rea V; Lastdrager J; Honing M; Vermeulen NP; Commandeur JN
    J Biol Inorg Chem; 2011 Aug; 16(6):899-912. PubMed ID: 21567268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis.
    Dietrich M; Eiben S; Asta C; Do TA; Pleiss J; Urlacher VB
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):931-40. PubMed ID: 18483737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystals in Minutes: Instant On-Site Microcrystallisation of Various Flavours of the CYP102A1 (P450BM3) Haem Domain.
    Stanfield JK; Omura K; Matsumoto A; Kasai C; Sugimoto H; Shiro Y; Watanabe Y; Shoji O
    Angew Chem Int Ed Engl; 2020 May; 59(19):7611-7618. PubMed ID: 32157795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro characterization of CYP102G4 from Streptomyces cattleya: A self-sufficient P450 naturally producing indigo.
    Kim J; Lee PG; Jung EO; Kim BG
    Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):60-67. PubMed ID: 28821467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning chimeragenesis: the approach used to change the substrate selectivity of fatty acid monooxygenase CYP102A1 to that of terpene omega-hydroxylase CYP4C7.
    Chen CK; Berry RE; Shokhireva TKh; Murataliev MB; Zhang H; Walker FA
    J Biol Inorg Chem; 2010 Feb; 15(2):159-74. PubMed ID: 19727859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The full-length cytochrome P450 enzyme CYP102A1 dimerizes at its reductase domains and has flexible heme domains for efficient catalysis.
    Zhang H; Yokom AL; Cheng S; Su M; Hollenberg PF; Southworth DR; Osawa Y
    J Biol Chem; 2018 May; 293(20):7727-7736. PubMed ID: 29618513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, electronic properties and catalytic behaviour of an activity-enhancing CYP102A1 (P450(BM3)) variant.
    Whitehouse CJ; Yang W; Yorke JA; Tufton HG; Ogilvie LC; Bell SG; Zhou W; Bartlam M; Rao Z; Wong LL
    Dalton Trans; 2011 Oct; 40(40):10383-96. PubMed ID: 21603690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the applicability of cytochrome P450s and other haemoproteins.
    Ariyasu S; Stanfield JK; Aiba Y; Shoji O
    Curr Opin Chem Biol; 2020 Dec; 59():155-163. PubMed ID: 32781431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3).
    Whitehouse CJ; Yang W; Yorke JA; Rowlatt BC; Strong AJ; Blanford CF; Bell SG; Bartlam M; Wong LL; Rao Z
    Chembiochem; 2010 Dec; 11(18):2549-56. PubMed ID: 21110374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering bacterial cytochrome P450 (P450) BM3 into a prototype with human P450 enzyme activity using indigo formation.
    Park SH; Kim DH; Kim D; Kim DH; Jung HC; Pan JG; Ahn T; Kim D; Yun CH
    Drug Metab Dispos; 2010 May; 38(5):732-9. PubMed ID: 20100815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient hydroxylation of cycloalkanes by co-addition of decoy molecules to variants of the cytochrome P450 CYP102A1.
    Dezvarei S; Onoda H; Shoji O; Watanabe Y; Bell SG
    J Inorg Biochem; 2018 Jun; 183():137-145. PubMed ID: 29526504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for the strained phenylalanine ring rotation induced by substrate binding to cytochrome CYP102A1.
    Haines DC
    Protein Pept Lett; 2006; 13(10):977-80. PubMed ID: 17168818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity.
    Chen CK; Shokhireva TKh; Berry RE; Zhang H; Walker FA
    J Biol Inorg Chem; 2008 Jun; 13(5):813-24. PubMed ID: 18392864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wild-type CYP102A1 as a biocatalyst: turnover of drugs usually metabolised by human liver enzymes.
    Di Nardo G; Fantuzzi A; Sideri A; Panicco P; Sassone C; Giunta C; Gilardi G
    J Biol Inorg Chem; 2007 Mar; 12(3):313-23. PubMed ID: 17235582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of human metabolites of 7-ethoxycoumarin by bacterial cytochrome P450 BM3.
    Kim DH; Kim KH; Kim DH; Liu KH; Jung HC; Pan JG; Yun CH
    Drug Metab Dispos; 2008 Nov; 36(11):2166-70. PubMed ID: 18669587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The self-sufficient CYP102 family enzyme, Krac9955, from Ktedonobacter racemifer DSM44963 acts as an alkyl- and alkyloxy-benzoic acid hydroxylase.
    Maddigan NK; Bell SG
    Arch Biochem Biophys; 2017 Feb; 615():15-21. PubMed ID: 28048974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly active single-mutation variant of P450BM3 (CYP102A1).
    Whitehouse CJ; Bell SG; Yang W; Yorke JA; Blanford CF; Strong AJ; Morse EJ; Bartlam M; Rao Z; Wong LL
    Chembiochem; 2009 Jul; 10(10):1654-6. PubMed ID: 19492389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.