These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37167749)

  • 1. SpikeSEE: An energy-efficient dynamic scenes processing framework for retinal prostheses.
    Wang C; Fang C; Zou Y; Yang J; Sawan M
    Neural Netw; 2023 Jul; 164():357-368. PubMed ID: 37167749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NeuroSEE: A Neuromorphic Energy-Efficient Processing Framework for Visual Prostheses.
    Wang C; Yang J; Sawan M
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):4132-4141. PubMed ID: 35503849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence techniques for retinal prostheses: a comprehensive review and future direction.
    Wang C; Fang C; Zou Y; Yang J; Sawan M
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36634357
    [No Abstract]   [Full Text] [Related]  

  • 4. Reconstruction of natural visual scenes from neural spikes with deep neural networks.
    Zhang Y; Jia S; Zheng Y; Yu Z; Tian Y; Ma S; Huang T; Liu JK
    Neural Netw; 2020 May; 125():19-30. PubMed ID: 32070853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Video Anomaly Detection with Sparse Coding Inspired Deep Neural Networks.
    Luo W; Liu W; Lian D; Tang J; Duan L; Peng X; Gao S
    IEEE Trans Pattern Anal Mach Intell; 2021 Mar; 43(3):1070-1084. PubMed ID: 31567072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The uniqueness of the message in a retinal ganglion cell spike train and its implication for retinal prostheses.
    Troy JB; Yrazu FM; Passaglia CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():312-3. PubMed ID: 23365892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-rectangular waveforms are more charge-efficient than rectangular one in eliciting network-mediated responses of ON type retinal ganglion cells.
    Lee JI; Im M
    J Neural Eng; 2018 Oct; 15(5):055004. PubMed ID: 30018183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding of retinal ganglion cell spike trains evoked by temporally patterned electrical stimulation.
    Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH
    Brain Res; 2010 Aug; 1348():71-83. PubMed ID: 20599822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells.
    Cui Y; Wang YV; Park SJ; Demb JB; Butts DA
    Elife; 2016 Nov; 5():. PubMed ID: 27841746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Convolutional Neural Network-based Model of Neural Pathways in the Retina
    Zamani Y; Nategh N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6906-6909. PubMed ID: 31947427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses.
    Bansal H; Gupta N; Roy S
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229315
    [No Abstract]   [Full Text] [Related]  

  • 12. Short pulses of epiretinal prostheses evoke network-mediated responses in retinal ganglion cells by stimulating presynaptic neurons.
    Roh H; Otgondemberel Y; Im M
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36055185
    [No Abstract]   [Full Text] [Related]  

  • 13. Decoding visual information from a population of retinal ganglion cells.
    Warland DK; Reinagel P; Meister M
    J Neurophysiol; 1997 Nov; 78(5):2336-50. PubMed ID: 9356386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfing a spike wave down the ventral stream.
    VanRullen R; Thorpe SJ
    Vision Res; 2002 Oct; 42(23):2593-615. PubMed ID: 12446033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoding visual information in retinal ganglion cells with prosthetic stimulation.
    Freeman DK; Rizzo JF; Fried SI
    J Neural Eng; 2011 Jun; 8(3):035005. PubMed ID: 21593546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Spatiotemporal Pattern Recognition With Recurrent Spiking Neural Network.
    Shen J; Liu JK; Wang Y
    Neural Comput; 2021 Oct; 33(11):2971-2995. PubMed ID: 34474470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implantable metaverse with retinal prostheses and bionic vision processing.
    Xi N; Ye J; Chen CP; Chu Q; Hu H; Zou SP
    Opt Express; 2023 Jan; 31(2):1079-1091. PubMed ID: 36785150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of electrical stimulation of retinal ganglion cells with temporal patterns resembling light-evoked spike trains.
    Wong RC; Garrett DJ; Grayden DB; Ibbotson MR; Cloherty SL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1707-10. PubMed ID: 25570304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially patterned electrical stimulation to enhance resolution of retinal prostheses.
    Jepson LH; Hottowy P; Mathieson K; Gunning DE; DÄ…browski W; Litke AM; Chichilnisky EJ
    J Neurosci; 2014 Apr; 34(14):4871-81. PubMed ID: 24695706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike-triggered average electrical stimuli as input filters for bionic vision-a perspective.
    Rathbun DL; Ghorbani N; Shabani H; Zrenner E; Hosseinzadeh Z
    J Neural Eng; 2018 Dec; 15(6):063002. PubMed ID: 30258042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.