These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37167872)

  • 1. High-resolution imaging of O
    He Y; Ding N; Yu G; Sunahara GI; Lin H; Zhang X; Ullah H; Liu J
    J Hazard Mater; 2023 Aug; 455():131580. PubMed ID: 37167872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial dynamics of pH in the rhizosphere of Leersia hexandra Swartz at different chromium exposure.
    Ding N; Ullah H; Yu G; He Y; Liu L; Xie Y; Shahab A; Lin H
    Ecotoxicol Environ Saf; 2023 Sep; 263():115380. PubMed ID: 37597293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights into trace metal mobilization at the micro-scale in the rhizosphere of Vallisneria spiralis.
    Li C; Ding S; Chen M; Sun Q; Zhang Y; Ma X; Zhong Z; Tsang DCW; Wang Y
    Sci Total Environ; 2022 Feb; 806(Pt 3):150735. PubMed ID: 34606867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.
    Zhang XH; Liu J; Huang HT; Chen J; Zhu YN; Wang DQ
    Chemosphere; 2007 Apr; 67(6):1138-43. PubMed ID: 17207838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz facilitated Cr(VI) reduction by shaping soil functional microbial communities.
    Xiao W; Zhang Q; Huang M; Zhao S; Chen D; Gao N; Chu T; Ye X
    Chemosphere; 2024 Apr; 353():141636. PubMed ID: 38447895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil.
    Liu J; Duan C; Zhang X; Zhu Y; Lu X
    J Hazard Mater; 2011 Apr; 188(1-3):85-91. PubMed ID: 21320751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus Enhances Cr(VI) Uptake and Accumulation in Leersia hexandra Swartz.
    Wu CC; Liu J; Zhang XH; Wei SG
    Bull Environ Contam Toxicol; 2018 Dec; 101(6):738-743. PubMed ID: 30306192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralogical characteristics of root iron plaque and its functional mechanism for regulating Cr phytoextraction of hyperaccumulator Leersia hexandra Swartz.
    Zhang X; Su C; Zhang Y; Lai S; Han S; Zhang X; Zheng J
    Environ Res; 2023 Jul; 228():115846. PubMed ID: 37024027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation and chemical form of chromium in Leersia hexandra Swartz.
    Zhang X; Liu J; Wang D; Zhu Y; Hu C; Sun J
    Bull Environ Contam Toxicol; 2009 Mar; 82(3):358-62. PubMed ID: 18953472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxalic acid enhances Cr tolerance in the accumulating plant Leersia hexandra Swartz.
    Wang D; Zhang X; Liu J; Zhu Y; Zhang H; Zhang A; Jin X
    Int J Phytoremediation; 2012 Dec; 14(10):966-77. PubMed ID: 22908658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and biochemical responses of Leersia hexandra Swartz to nickel stress: Insights into antioxidant defense mechanisms and metal detoxification strategies.
    Chen M; Jiang P; Zhang X; Sunahara GI; Liu J; Yu G
    J Hazard Mater; 2024 Mar; 466():133578. PubMed ID: 38306837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of electron transfer in the bioadsorption of hexavalent chromium within Leersia hexandra Swartz granules by X-ray photoelectron spectroscopy.
    Li J; Lin Q; Zhang X
    J Hazard Mater; 2010 Oct; 182(1-3):598-602. PubMed ID: 20638174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer.
    Hoefer C; Santner J; Borisov SM; Wenzel WW; Puschenreiter M
    Anal Chim Acta; 2017 Jan; 950():88-97. PubMed ID: 27916135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling Metal Tolerance Mechanisms in
    Chen M; Yu G; Qiu H; Jiang P; Zhong X; Liu J
    Metabolites; 2024 Apr; 14(4):. PubMed ID: 38668359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Determination of organic acids in the root exudates of Cr-hyperaccumulator
    Wu C; Liu J; Zhang X
    Se Pu; 2018 Feb; 36(2):167-172. PubMed ID: 29582603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome and metabolome analysis reveal key genes and metabolic pathway responses in Leersia hexandra Swartz under Cr and Ni co-stress.
    Fu Y; Lin Y; Deng Z; Chen M; Yu G; Jiang P; Zhang X; Liu J; Yang X
    J Hazard Mater; 2024 Jul; 473():134590. PubMed ID: 38762990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of iron-loaded sludge biochar amendments on phytoremediation potential of Cr-contaminated soils by Leersia hexandra swartz.
    Wang JC; Zhao JR; Huang QX; Yang LJ; Yu G; Xu YF; Liu LH
    Chemosphere; 2023 Oct; 337():139355. PubMed ID: 37385485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism study of Chromium influenced soil remediated by an uptake-detoxification system using hyperaccumulator, resistant microbe consortium, and nano iron complex.
    Wang C; Tan H; Li H; Xie Y; Liu H; Xu F; Xu H
    Environ Pollut; 2020 Feb; 257():113558. PubMed ID: 31708284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.
    You SH; Zhang XH; Liu J; Zhu YN; Gu C
    Environ Technol; 2014; 35(1-4):187-94. PubMed ID: 24600856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of phosphorous fertilizers on growth, Cu phytoextraction and tolerance of
    Lin H; Zhang C; Zhang X; Liu L; Chhuon K
    Int J Phytoremediation; 2020; 22(6):578-584. PubMed ID: 31809580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.