BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 371679)

  • 1. Dissociation of guanosine nucleotide-elongation factor G-ribosome complexes.
    Campuzano S; Vázquez D; Modolell J
    Biochemistry; 1979 Apr; 18(8):1570-4. PubMed ID: 371679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of guanosine-nucleotide.elongation-factor-G complexes produced during the decay of guanosine-nucleotide.elongation-factor-G.Ribosome complexes.
    Girbes T; Vázquez D; Modolell J
    Eur J Biochem; 1977 Dec; 81(3):473-81. PubMed ID: 340226
    [No Abstract]   [Full Text] [Related]  

  • 3. Equilibrium measurements of the interactions of guanine nucleotides with Escherichia coli elongation factor G and the ribosome.
    Baca OG; Rohrbach MS; Bodley JW
    Biochemistry; 1976 Oct; 15(21):4570-4. PubMed ID: 788779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cations, antibiotics and other agents on the turnover of guanosine-nucleotide.elongation-factor-G.ribosome complexes.
    Girbes T; Campuzano S; Vźquez D; Modolell J
    Eur J Biochem; 1977 Dec; 81(3):483-90. PubMed ID: 340227
    [No Abstract]   [Full Text] [Related]  

  • 5. The allosteric three-site model for the ribosomal elongation cycle. New insights into the inhibition mechanisms of aminoglycosides, thiostrepton, and viomycin.
    Hausner TP; Geigenmüller U; Nierhaus KH
    J Biol Chem; 1988 Sep; 263(26):13103-11. PubMed ID: 2843509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of guanosine 5'-di- and -triphosphate derivatives with modified terminal phosphates: effect on ribosome-elongation factor G-dependent reactions.
    Eckstein F; Bruns W; Parmeggiani A
    Biochemistry; 1975 Nov; 14(23):5225-32. PubMed ID: 1103967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding interaction between Tet(M) and the ribosome: requirements for binding.
    Dantley KA; Dannelly HK; Burdett V
    J Bacteriol; 1998 Aug; 180(16):4089-92. PubMed ID: 9696754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of guanosine-nucleotide - elongation-factor-G - ribosome complexes on free 70-S ribosomes, 50-S subunits, and polysomes. A comparative study.
    San-Millán MJ; Vázquez D; Modolell J
    Eur J Biochem; 1977 May; 75(2):593-600. PubMed ID: 328279
    [No Abstract]   [Full Text] [Related]  

  • 9. Some characteristics of and structural requirements for the interaction of 24,25-dihydrofusidic acid with ribosome - elongation factor g Complexes.
    Willie GR; Richman N; Godtfredsen WP; Bodley JW
    Biochemistry; 1975 Apr; 14(8):1713-8. PubMed ID: 1092341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interaction of neomycin B and related antibiotics with 30S and 50S ribosomal subunits.
    Campuzano S; Vázquez D; Modolell J
    Biochem Biophys Res Commun; 1979 Apr; 87(3):960-6. PubMed ID: 378226
    [No Abstract]   [Full Text] [Related]  

  • 11. The L7/L12 proteins change their conformation upon interaction of EF-G with ribosomes.
    Gudkov AT; Gongadze GM
    FEBS Lett; 1984 Oct; 176(1):32-6. PubMed ID: 6092137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations.
    Mesters JR; Potapov AP; de Graaf JM; Kraal B
    J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of elongation factor 2 with ribosomes from silk gland. Formation of an EF-2-ribosome-GDP complex.
    Taira H; Ejiri S; Shimura K
    J Biochem; 1974 Nov; 76(5):949-57. PubMed ID: 4616032
    [No Abstract]   [Full Text] [Related]  

  • 14. Stabilization by the 30S ribosomal subunit of the interaction of 50S subunits with elongation factor G and guanine nucleotide.
    Marsh RC; Parmeggiani A
    Biochemistry; 1977 Apr; 16(7):1278-83. PubMed ID: 321016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyphenylalanine synthesis by crystallized trypsin-modified EF-Tu.GDP.
    Wittinghofer A; Frank R; Gast WH; Leberman R
    J Mol Biol; 1979 Aug; 132(2):253-6. PubMed ID: 395311
    [No Abstract]   [Full Text] [Related]  

  • 16. Formation of a binary complex between elongation factor G and guanine nucleotides.
    Arai N; Arai K; Kaziro Y
    J Biochem; 1975 Jul; 78(1):243-6. PubMed ID: 1104601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli elongation factor G blocks stringent factor.
    Wagner EG; Kurland CG
    Biochemistry; 1980 Mar; 19(6):1234-40. PubMed ID: 6245682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of inhibition of translocation by kanamycin and viomycin: a comparative study with fusidic acid.
    Misumi M; Tanaka N
    Biochem Biophys Res Commun; 1980 Jan; 92(2):647-54. PubMed ID: 6243944
    [No Abstract]   [Full Text] [Related]  

  • 19. Protection of ribosomes from thiostrepton inactivation by the binding of G factor and guanosine diphosphate.
    Highland JH; Lin L; Bodley JW
    Biochemistry; 1971 Nov; 10(24):4404-9. PubMed ID: 4946920
    [No Abstract]   [Full Text] [Related]  

  • 20. Interaction of elongation factor EF-Tu with gamma-amides of GTP and beta-amides of GDP bearing the azidoaryl group or the chloroethylaminoaryl group placed at the terminal phosphate.
    Babkina GT; Jonák J; Rychlík I
    Biochim Biophys Acta; 1982 Aug; 698(2):116-27. PubMed ID: 6751396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.