These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37167916)

  • 1. Carbon bowl-confined subnanometric palladium-gold clusters for formic acid dehydrogenation and hexavalent chromium reduction.
    Sun X; Ding Y; Feng G; Yao Q; Zhu J; Xia J; Lu ZH
    J Colloid Interface Sci; 2023 Sep; 645():676-684. PubMed ID: 37167916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amine-functionalized Schiff base covalent organic frameworks supported PdAuIr nanoparticles as high-performance catalysts for formic acid dehydrogenation and hexavalent chromium reduction.
    Guo X; Di X; Tang T; Shi Y; Liu D; Wang W; Liu Z; Ji X; Shao X
    J Colloid Interface Sci; 2024 Mar; 658():362-372. PubMed ID: 38113545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid.
    Ding Y; Peng W; Zhang L; Xia J; Feng G; Lu ZH
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):879-887. PubMed ID: 36306599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafine PdAu nanoparticles immobilized on amine functionalized carbon black toward fast dehydrogenation of formic acid at room temperature.
    Wu L; Ni B; Chen R; Shi C; Sun P; Chen T
    Nanoscale Adv; 2019 Nov; 1(11):4415-4421. PubMed ID: 36134405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH)
    Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH
    Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Effective Strategy to Boost Formic Acid Dehydrogenation over Pd/AC-NH
    Jiang S; Shi H; Xu Y; Liu J; Yu T; Ren G
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39377117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anchoring IrPdAu Nanoparticles on NH
    Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of palladium silver nanoparticles on NH
    Han J; Zhang Z; Hao Z; Li G; Liu T
    J Colloid Interface Sci; 2021 Apr; 587():736-742. PubMed ID: 33223240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient hydrogen production from formic acid dehydrogenation over ultrasmall PdIr nanoparticles on amine-functionalized yolk-shell mesoporous silica.
    Chai H; Hu J; Zhang R; Feng Y; Li H; Liu Z; Zhou C; Wang X
    J Colloid Interface Sci; 2025 Jan; 678(Pt C):261-271. PubMed ID: 39298977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable Synthesis of Supported PdAu Nanoclusters and Their Electronic Structure-Dependent Catalytic Activity in Selective Dehydrogenation of Formic Acid.
    Ye W; Huang H; Zou W; Ge Y; Lu R; Zhang S
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34258-34265. PubMed ID: 34263596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zeolite-Encaged Pd-Mn Nanocatalysts for CO
    Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasmall Pd nanoparticles supported on a metal-organic framework DUT-67-PZDC for enhanced formic acid dehydrogenation.
    Zhou C; Zhang R; Hu J; Yao C; Liu Z; Duan A; Wang X
    J Colloid Interface Sci; 2024 Nov; 673():997-1006. PubMed ID: 39002361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions.
    Bi QY; Du XL; Liu YM; Cao Y; He HY; Fan KN
    J Am Chem Soc; 2012 May; 134(21):8926-33. PubMed ID: 22568664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon.
    Li M; He J; Tang Y; Sun J; Fu H; Wan Y; Qu X; Xu Z; Zheng S
    Chemosphere; 2019 Feb; 217():742-753. PubMed ID: 30448754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Developments in Reversible CO
    Kushwaha S; Parthiban J; Singh SK
    ACS Omega; 2023 Oct; 8(42):38773-38793. PubMed ID: 37901502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH
    Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q
    Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid.
    Liu H; Huang M; Tao W; Han L; Zhang J; Zhao Q
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.