These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37168319)

  • 41. Regulation of Jasmonate-Mediated Stamen Development and Seed Production by a bHLH-MYB Complex in Arabidopsis.
    Qi T; Huang H; Song S; Xie D
    Plant Cell; 2015 Jun; 27(6):1620-33. PubMed ID: 26002869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inside the gynoecium: at the carpel margin.
    Reyes-Olalde JI; Zuñiga-Mayo VM; Chávez Montes RA; Marsch-Martínez N; de Folter S
    Trends Plant Sci; 2013 Nov; 18(11):644-55. PubMed ID: 24008116
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hormones talking: does hormonal cross-talk shape the Arabidopsis gynoecium?
    Marsch-Martínez N; Reyes-Olalde JI; Ramos-Cruz D; Lozano-Sotomayor P; Zúñiga-Mayo VM; de Folter S
    Plant Signal Behav; 2012 Dec; 7(12):1698-701. PubMed ID: 23072997
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hormonal control of the development of the gynoecium.
    Marsch-Martínez N; de Folter S
    Curr Opin Plant Biol; 2016 Feb; 29():104-14. PubMed ID: 26799132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis.
    Dinneny JR; Weigel D; Yanofsky MF
    Development; 2006 May; 133(9):1645-55. PubMed ID: 16554365
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-wide identification of MIKC-type genes related to stamen and gynoecium development in Liriodendron.
    Liu H; Yang L; Tu Z; Zhu S; Zhang C; Li H
    Sci Rep; 2021 Mar; 11(1):6585. PubMed ID: 33753780
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Control of carpel and fruit development in Arabidopsis.
    Ferrándiz C; Pelaz S; Yanofsky MF
    Annu Rev Biochem; 1999; 68():321-54. PubMed ID: 10872453
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arabidopsis HECATE genes function in phytohormone control during gynoecium development.
    Schuster C; Gaillochet C; Lohmann JU
    Development; 2015 Oct; 142(19):3343-50. PubMed ID: 26293302
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developmental cartography: coordination via hormonal and genetic interactions during gynoecium formation.
    Deb J; Bland HM; Østergaard L
    Curr Opin Plant Biol; 2018 Feb; 41():54-60. PubMed ID: 28961459
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gynoecium and fruit development in Arabidopsis.
    Herrera-Ubaldo H; de Folter S
    Development; 2022 Mar; 149(5):. PubMed ID: 35226096
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor.
    Bonaccorso O; Lee JE; Puah L; Scutt CP; Golz JF
    BMC Plant Biol; 2012 Oct; 12():176. PubMed ID: 23025792
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polar auxin transport together with aintegumenta and revoluta coordinate early Arabidopsis gynoecium development.
    Nole-Wilson S; Azhakanandam S; Franks RG
    Dev Biol; 2010 Oct; 346(2):181-95. PubMed ID: 20654611
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Juicy stories on female reproductive tissue development: coordinating the hormone flows.
    Grieneisen VA; Marée AF; Ostergaard L
    J Integr Plant Biol; 2013 Sep; 55(9):847-63. PubMed ID: 23869979
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Duplicated STM-like KNOX I genes act in floral meristem activity in Eschscholzia californica (Papaveraceae).
    Stammler A; Meyer SS; Plant AR; Townsley BT; Becker A; Gleissberg S
    Dev Genes Evol; 2013 Sep; 223(5):289-301. PubMed ID: 23636178
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium.
    Ståldal V; Sohlberg JJ; Eklund DM; Ljung K; Sundberg E
    New Phytol; 2008; 180(4):798-808. PubMed ID: 18811619
    [TBL] [Abstract][Full Text] [Related]  

  • 56. BLADE-ON-PETIOLE 1 and 2 control Arabidopsis lateral organ fate through regulation of LOB domain and adaxial-abaxial polarity genes.
    Ha CM; Jun JH; Nam HG; Fletcher JC
    Plant Cell; 2007 Jun; 19(6):1809-25. PubMed ID: 17601823
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A model for an early role of auxin in Arabidopsis gynoecium morphogenesis.
    Hawkins C; Liu Z
    Front Plant Sci; 2014; 5():327. PubMed ID: 25071809
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synergistic action of GCN5 and CLAVATA1 in the regulation of gynoecium development in Arabidopsis thaliana.
    Poulios S; Vlachonasios KE
    New Phytol; 2018 Oct; 220(2):593-608. PubMed ID: 30027613
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium.
    Reyes-Olalde JI; Zúñiga-Mayo VM; Serwatowska J; Chavez Montes RA; Lozano-Sotomayor P; Herrera-Ubaldo H; Gonzalez-Aguilera KL; Ballester P; Ripoll JJ; Ezquer I; Paolo D; Heyl A; Colombo L; Yanofsky MF; Ferrandiz C; Marsch-Martínez N; de Folter S
    PLoS Genet; 2017 Apr; 13(4):e1006726. PubMed ID: 28388635
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The shady side of leaf development: the role of the REVOLUTA/KANADI1 module in leaf patterning and auxin-mediated growth promotion.
    Merelo P; Paredes EB; Heisler MG; Wenkel S
    Curr Opin Plant Biol; 2017 Feb; 35():111-116. PubMed ID: 27918939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.