These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37168688)

  • 1. Field programmable gate array compression for large array multispeckle diffuse correlation spectroscopy.
    Della Rocca FM; Sie EJ; Catoen R; Marsili F; Henderson RK
    J Biomed Opt; 2023 May; 28(5):057001. PubMed ID: 37168688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-sensitivity multispeckle diffuse correlation spectroscopy.
    Sie EJ; Chen H; Saung EF; Catoen R; Tiecke T; Chevillet MA; Marsili F
    Neurophotonics; 2020 Jul; 7(3):035010. PubMed ID: 32995362
    [No Abstract]   [Full Text] [Related]  

  • 3. Massively parallel, real-time multispeckle diffuse correlation spectroscopy using a 500 × 500 SPAD camera.
    Wayne MA; Sie EJ; Ulku AC; Mos P; Ardelean A; Marsili F; Bruschini C; Charbon E
    Biomed Opt Express; 2023 Feb; 14(2):703-713. PubMed ID: 36874503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of Active-Quenching SPAD Array Based on the Tri-State Gates of FPGA and Packaged with Bare Chip Stacking.
    Liu L; Lv W; Liu J; Zhang X; Liang K; Yang R; Han D
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multipixel diffuse correlation spectroscopy system based on a single photon avalanche diode array.
    Johansson JD; Portaluppi D; Buttafava M; Villa F
    J Biophotonics; 2019 Nov; 12(11):e201900091. PubMed ID: 31339649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA.
    Moore CH; Sunar U; Lin W
    Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffuse Correlation Spectroscopy Analysis Implemented on a Field Programmable Gate Array.
    Lin W; Busch DR; Goh CC; Barsi J; Floyd TF
    IEEE Access; 2019; 7():122503-122512. PubMed ID: 32457822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart Wide-field Fluorescence Lifetime Imaging System with CMOS Single-photon Avalanche Diode Arrays.
    Xiao D; Zang Z; Wang Q; Jiao Z; Rocca FMD; Chen Y; Li DDU
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1887-1890. PubMed ID: 36086288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interferometric diffuse correlation spectroscopy improves measurements at long source-detector separation and low photon count rate.
    Robinson M; Boas D; Sakadžic S; Franceschini MA; Carp S
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 33000571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series.
    Buchholz J; Krieger JW; Mocsár G; Kreith B; Charbon E; Vámosi G; Kebschull U; Langowski J
    Opt Express; 2012 Jul; 20(16):17767-82. PubMed ID: 23038328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phasor-based widefield FLIM using a gated 512×512 single-photon SPAD imager.
    Ulku AC; Bruschini C; Antolovic IM; Weiss S; Michalet X; Charbon E
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10882():. PubMed ID: 33859449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles.
    Cheng X; Chen H; Sie EJ; Marsili F; Boas DA
    J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Point-of-Care Device for Molecular Diagnosis Based on CMOS SPAD Detectors with Integrated Microfluidics.
    Canals J; Franch N; Alonso O; Vilà A; Diéguez A
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm.
    Li DD; Arlt J; Tyndall D; Walker R; Richardson J; Stoppa D; Charbon E; Henderson RK
    J Biomed Opt; 2011 Sep; 16(9):096012. PubMed ID: 21950926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Low-Resources TDC for Multi-Channel Direct ToF Readout Based on a 28-nm FPGA.
    Parsakordasiabi M; Vornicu I; Rodríguez-Vázquez Á; Carmona-Galán R
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33466355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light.
    Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superconducting nanowire single-photon sensing of cerebral blood flow.
    Ozana N; Zavriyev AI; Mazumder D; Robinson M; Kaya K; Blackwell M; Carp SA; Franceschini MA
    Neurophotonics; 2021 Jul; 8(3):035006. PubMed ID: 34423069
    [No Abstract]   [Full Text] [Related]  

  • 18. Diffuse Correlation Spectroscopy Beyond the Water Peak Enabled by Cross-Correlation of the Signals From InGaAs/InP Single Photon Detectors.
    Robinson MB; Renna M; Ozana NN; Peruch A; Sakadzic S; Blackwell ML; Richardson JM; Aull BF; Carp SA; Franceschini MA
    IEEE Trans Biomed Eng; 2022 Jun; 69(6):1943-1953. PubMed ID: 34847015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor.
    Ren X; Connolly PWR; Halimi A; Altmann Y; McLaughlin S; Gyongy I; Henderson RK; Buller GS
    Opt Express; 2018 Mar; 26(5):5541-5557. PubMed ID: 29529757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coded-pulse-bunch-laser-based single-photon lidar for fast long-distance ranging.
    Ding Y; Wu H; Gao X; Wu B; Shen Y
    J Opt Soc Am A Opt Image Sci Vis; 2022 Feb; 39(2):206-212. PubMed ID: 35200953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.