These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37168809)

  • 1. A Systematic Review of Using Deep Learning Technology in the Steady-State Visually Evoked Potential-Based Brain-Computer Interface Applications: Current Trends and Future Trust Methodology.
    Albahri AS; Al-Qaysi ZT; Alzubaidi L; Alnoor A; Albahri OS; Alamoodi AH; Bakar AA
    Int J Telemed Appl; 2023; 2023():7741735. PubMed ID: 37168809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Intelligence Algorithms in Visual Evoked Potential-Based Brain-Computer Interfaces for Motor Rehabilitation Applications: Systematic Review and Future Directions.
    Gutierrez-Martinez J; Mercado-Gutierrez JA; Carvajal-Gámez BE; Rosas-Trigueros JL; Contreras-Martinez AE
    Front Hum Neurosci; 2021; 15():772837. PubMed ID: 34899220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-person feature fusion transfer learning-based convolutional neural network for SSVEP-based collaborative BCI.
    Li P; Su J; Belkacem AN; Cheng L; Chen C
    Front Neurosci; 2022; 16():971039. PubMed ID: 35958998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Analysis of Deep Learning Models in SSVEP-Based BCI: A Survey.
    Xu D; Tang F; Li Y; Zhang Q; Feng X
    Brain Sci; 2023 Mar; 13(3):. PubMed ID: 36979293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denoising Autoencoder-Based Feature Extraction to Robust SSVEP-Based BCIs.
    Chen YJ; Chen PC; Chen SC; Wu CM
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Zero-Padding Frequency Domain Convolutional Neural Network for SSVEP Classification.
    Gao D; Zheng W; Wang M; Wang L; Xiao Y; Zhang Y
    Front Hum Neurosci; 2022; 16():815163. PubMed ID: 35370578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Deep Learning (hDL)-Based Brain-Computer Interface (BCI) Systems: A Systematic Review.
    Alzahab NA; Apollonio L; Di Iorio A; Alshalak M; Iarlori S; Ferracuti F; Monteriù A; Porcaro C
    Brain Sci; 2021 Jan; 11(1):. PubMed ID: 33429938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bipolar-Channel Hybrid Brain-Computer Interface System for Home Automation Control Utilizing Steady-State Visually Evoked Potential and Eye-Blink Signals.
    Yang D; Nguyen TH; Chung WY
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Task Learning-Based Deep Neural Network for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces.
    Chuang CC; Lee CC; So EC; Yeng CH; Chen YJ
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential.
    Brumberg JS; Nguyen A; Pitt KM; Lorenz SD
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):241-249. PubMed ID: 29385839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition.
    Pan Y; Chen J; Zhang Y; Zhang Y
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36041426
    [No Abstract]   [Full Text] [Related]  

  • 12. Exploration of User's Mental State Changes during Performing Brain-Computer Interface.
    Ko LW; Chikara RK; Lee YC; Lin WC
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM.
    Mughal NE; Khan MJ; Khalil K; Javed K; Sajid H; Naseer N; Ghafoor U; Hong KS
    Front Neurorobot; 2022; 16():873239. PubMed ID: 36119719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Status of deep learning for EEG-based brain-computer interface applications.
    Hossain KM; Islam MA; Hossain S; Nijholt A; Ahad MAR
    Front Comput Neurosci; 2022; 16():1006763. PubMed ID: 36726556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitating Applications of SSVEP-Based BCIs by Within-Subject Information Transfer.
    Liu X; Liu B; Dong G; Gao X; Wang Y
    Front Neurosci; 2022; 16():863359. PubMed ID: 35720721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FB-CCNN: A Filter Bank Complex Spectrum Convolutional Neural Network with Artificial Gradient Descent Optimization.
    Xu D; Tang F; Li Y; Zhang Q; Feng X
    Brain Sci; 2023 May; 13(5):. PubMed ID: 37239253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.
    Ma T; Li H; Yang H; Lv X; Li P; Liu T; Yao D; Xu P
    J Neurosci Methods; 2017 Jan; 275():80-92. PubMed ID: 27845150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced System Robustness of Asynchronous BCI in Augmented Reality Using Steady-State Motion Visual Evoked Potential.
    Ravi A; Lu J; Pearce S; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():85-95. PubMed ID: 34990366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.