These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37168883)

  • 1. Standardizing the factors used in wind farm site suitability models: A review.
    Wimhurst JJ; Nsude CC; Greene JS
    Heliyon; 2023 May; 9(5):e15903. PubMed ID: 37168883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the cumulative exposure of wildlife to offshore wind energy development.
    Goodale MW; Milman A
    J Environ Manage; 2019 Apr; 235():77-83. PubMed ID: 30677658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraints on Development of Wind Energy in Poland due to Environmental Objectives. Is There Space in Poland for Wind Farm Siting?
    Hajto M; Cichocki Z; Bidłasik M; Borzyszkowski J; Kuśmierz A
    Environ Manage; 2017 Feb; 59(2):204-217. PubMed ID: 27812796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental management framework for wind farm siting: methodology and case study.
    Tegou LI; Polatidis H; Haralambopoulos DA
    J Environ Manage; 2010 Nov; 91(11):2134-47. PubMed ID: 20541310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on offshore wind farm siting criteria using a novel interval-valued fuzzy-rough based Delphi method.
    Deveci M; Özcan E; John R; Covrig CF; Pamucar D
    J Environ Manage; 2020 Sep; 270():110916. PubMed ID: 32721349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GIS-based weighted overlay model for wind and solar farm locating in Sri Lanka.
    Kahatapitiya C; Jayasooriya VM; Muthukumaran S
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):98947-98965. PubMed ID: 36562971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-criteria decision analysis for wind farm location selection in Bahir Dar City and its surroundings, Northwestern Ethiopia.
    Yegizaw ES; Mengistu DA
    Environ Monit Assess; 2023 Apr; 195(5):559. PubMed ID: 37046150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The combination of fuzzy analytical hierarchical process and maximum entropy methods for the selection of wind farm location.
    Unal Cilek M; Guner ED; Tekin S
    Environ Sci Pollut Res Int; 2022 Sep; 29(43):65391-65406. PubMed ID: 35486277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-criteria of wind-solar site selection problem using a GIS-AHP-based approach with an application in Igdir Province/Turkey.
    Koc A; Turk S; Şahin G
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):32298-32310. PubMed ID: 31598925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A GIS-based multi-criteria model for offshore wind energy power plants site selection in both sides of the Aegean Sea.
    Tercan E; Tapkın S; Latinopoulos D; Dereli MA; Tsiropoulos A; Ak MF
    Environ Monit Assess; 2020 Sep; 192(10):652. PubMed ID: 32964332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot air ablowin! 'Media-speak', social conflict, and the Australian 'decoupled' wind farm controversy.
    Hindmarsh R
    Soc Stud Sci; 2014 Apr; 44(2):194-217. PubMed ID: 24941611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of development of wind energy and associated changes in land use on bird densities in upland areas.
    Fernández-Bellon D; Wilson MW; Irwin S; O'Halloran J
    Conserv Biol; 2019 Apr; 33(2):413-422. PubMed ID: 30346052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-optimisation of wind and solar energy and intermittency for renewable generator site selection.
    Wu H; West SR
    Heliyon; 2024 Mar; 10(5):e26891. PubMed ID: 38444508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Community readiness and momentum: identifying and including community-driven variables in a mixed-method rural palliative care service siting model.
    Crooks VA; Giesbrecht M; Castleden H; Schuurman N; Skinner M; Williams A
    BMC Palliat Care; 2018 Apr; 17(1):59. PubMed ID: 29625598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The quantity-quality transition in the value of expanding wind and solar power generation.
    Antonini EGA; Ruggles TH; Farnham DJ; Caldeira K
    iScience; 2022 Apr; 25(4):104140. PubMed ID: 35434557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Siting MSW landfills with a spatial multiple criteria analysis methodology.
    Kontos TD; Komilis DP; Halvadakis CP
    Waste Manag; 2005; 25(8):818-32. PubMed ID: 15946837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area.
    Eskandari M; Homaee M; Mahmodi S
    Waste Manag; 2012 Aug; 32(8):1528-38. PubMed ID: 22503155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of renewable energy systems sites using the MaxEnt model in the Eastern Mediterranean region in Turkey.
    Tekin S; Guner ED; Cilek A; Unal Cilek M
    Environ Sci Pollut Res Int; 2021 Oct; 28(37):51405-51424. PubMed ID: 33983608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated assessment for wind energy in Lake Michigan coastal counties.
    Nordman E; VanderMolen J; Gajewski B; Isely P; Fan Y; Koches J; Damm S; Ferguson A; Schoolmaster C
    Integr Environ Assess Manag; 2015 Apr; 11(2):287-97. PubMed ID: 25377179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited accessibility and bias in wildlife-wind energy knowledge: A bilingual systematic review of a globally distributed bird group.
    Fernández-Bellon D
    Sci Total Environ; 2020 Oct; 737():140238. PubMed ID: 32783846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.