These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37169185)

  • 41. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.
    Ng TL; Eheart JW; Cai X; Miguez F
    Environ Sci Technol; 2010 Sep; 44(18):7138-44. PubMed ID: 20681575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy Properties and Biomass Yield of Miscanthus x Giganteus Fertilized by Municipal Sewage Sludge.
    Voća N; Leto J; Karažija T; Bilandžija N; Peter A; Kutnjak H; Šurić J; Poljak M
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Responses of rhizosphere bacterial communities, their functions and their network interactions to Cd stress under phytostabilization by Miscanthus spp.
    Chen ZJ; Tian W; Li YJ; Sun LN; Chen Y; Zhang H; Li YY; Han H
    Environ Pollut; 2021 Oct; 287():117663. PubMed ID: 34435565
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus.
    Pidlisnyuk V; Erickson L; Stefanovska T; Popelka J; Hettiarachchi G; Davis L; Trögl J
    Environ Pollut; 2019 Jun; 249():330-337. PubMed ID: 30903832
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland.
    Bahn M; Lattanzi FA; Hasibeder R; Wild B; Koranda M; Danese V; Brüggemann N; Schmitt M; Siegwolf R; Richter A
    New Phytol; 2013 Apr; 198(1):116-126. PubMed ID: 23383758
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus.
    Ings J; Mur LA; Robson PR; Bosch M
    Front Plant Sci; 2013; 4():468. PubMed ID: 24324474
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.
    da Costa RM; Lee SJ; Allison GG; Hazen SP; Winters A; Bosch M
    Ann Bot; 2014 Oct; 114(6):1265-77. PubMed ID: 24737720
    [TBL] [Abstract][Full Text] [Related]  

  • 48.
    Bergs M; Völkering G; Kraska T; Pude R; Do XT; Kusch P; Monakhova Y; Konow C; Schulze M
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857288
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of miscanthus productivity and water use efficiency in southeastern United States.
    Maleski JJ; Bosch DD; Anderson RG; Coffin AW; Anderson WF; Strickland TC
    Sci Total Environ; 2019 Nov; 692():1125-1134. PubMed ID: 31539944
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery.
    Zang U; Goisser M; Grams TE; Häberle KH; Matyssek R; Matzner E; Borken W
    Tree Physiol; 2014 Jan; 34(1):29-38. PubMed ID: 24420388
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel Miscanthus hybrids: Modelling productivity on marginal land in Europe using dynamics of canopy development determined by light interception.
    Shepherd A; Awty-Carroll D; Kam J; Ashman C; Magenau E; Martani E; Kontek M; Ferrarini A; Amaducci S; Davey C; Jurišić V; Petrie GJ; Al Hassan M; Lamy I; Lewandowski I; de Maupeou E; McCalmont J; Trindade L; van der Cruijsen K; van der Pluijm P; Rowe R; Lovett A; Donnison I; Kiesel A; Clifton-Brown J; Hastings A
    Glob Change Biol Bioenergy; 2023 Apr; 15(4):444-461. PubMed ID: 38505760
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Establishment, Growth, and Yield Potential of the Perennial Grass
    Jeżowski S; Mos M; Buckby S; Cerazy-Waliszewska J; Owczarzak W; Mocek A; Kaczmarek Z; McCalmont JP
    Front Plant Sci; 2017; 8():726. PubMed ID: 28659931
    [No Abstract]   [Full Text] [Related]  

  • 54. A cell wall reference profile for Miscanthus bioenergy crops highlights compositional and structural variations associated with development and organ origin.
    da Costa RM; Pattathil S; Avci U; Lee SJ; Hazen SP; Winters A; Hahn MG; Bosch M
    New Phytol; 2017 Mar; 213(4):1710-1725. PubMed ID: 27859277
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils.
    Pavel PB; Puschenreiter M; Wenzel WW; Diacu E; Barbu CH
    Sci Total Environ; 2014 May; 479-480():125-31. PubMed ID: 24561291
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus x giganteus.
    Wang D; Portis AR; Moose SP; Long SP
    Plant Physiol; 2008 Sep; 148(1):557-67. PubMed ID: 18539777
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2.
    Gill RA; Anderson LJ; Polley HW; Johnson HB; Jackson RB
    Ecology; 2006 Jan; 87(1):41-52. PubMed ID: 16634295
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Growth and fecundity of fertile
    Miriti MN; Ibrahim T; Palik D; Bonin C; Heaton E; Mutegi E; Snow AA
    Ecol Evol; 2017 Aug; 7(15):5703-5712. PubMed ID: 28811879
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transformation and gene editing in the bioenergy grass Miscanthus.
    Trieu A; Belaffif MB; Hirannaiah P; Manjunatha S; Wood R; Bathula Y; Billingsley RL; Arpan A; Sacks EJ; Clemente TE; Moose SP; Reichert NA; Swaminathan K
    Biotechnol Biofuels Bioprod; 2022 Dec; 15(1):148. PubMed ID: 36578060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transgenic ZmMYB167 Miscanthus sinensis with increased lignin to boost bioenergy generation for the bioeconomy.
    Bhatia R; Timms-Taravella E; Roberts LA; Moron-Garcia OM; Hauck B; Dalton S; Gallagher JA; Wagner M; Clifton-Brown J; Bosch M
    Biotechnol Biofuels Bioprod; 2023 Feb; 16(1):29. PubMed ID: 36814294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.