These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 37169624)
1. Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer. Zeng Q; Xiong F; Liu L; Zhong L; Cai F; Zeng X Acad Radiol; 2023 Sep; 30 Suppl 2():S38-S49. PubMed ID: 37169624 [TBL] [Abstract][Full Text] [Related]
2. Radiomics Based on Dynamic Contrast-Enhanced MRI to Early Predict Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Therapy. Zeng Q; Ke M; Zhong L; Zhou Y; Zhu X; He C; Liu L Acad Radiol; 2023 Aug; 30(8):1638-1647. PubMed ID: 36564256 [TBL] [Abstract][Full Text] [Related]
3. [Preoperative prediction of HER-2 expression status in breast cancer based on MRI radiomics model]. Zhang Y; Huang H; Yin L; Wang ZX; Lu SY; Wang XX; Xiang LL; Zhang Q; Zhang JL; Shan XH Zhonghua Zhong Liu Za Zhi; 2024 May; 46(5):428-437. PubMed ID: 38742356 [No Abstract] [Full Text] [Related]
4. Value of radiomics based on CE-MRI for predicting the efficacy of neoadjuvant chemotherapy in invasive breast cancer. Li Q; Huang Y; Xiao Q; Duan S; Wang S; Li J; Niu Q; Gu Y Br J Radiol; 2022 Oct; 95(1139):20220186. PubMed ID: 36005646 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study. Wang X; Hua H; Han J; Zhong X; Liu J; Chen J Clin Breast Cancer; 2023 Aug; 23(6):e331-e344. PubMed ID: 37321954 [TBL] [Abstract][Full Text] [Related]
6. Delta Radiomics Based on MRI for Predicting Axillary Lymph Node Pathologic Complete Response After Neoadjuvant Chemotherapy in Breast Cancer Patients. Mao N; Bao Y; Dong C; Zhou H; Zhang H; Ma H; Wang Q; Xie H; Qu N; Wang P; Lin F; Lu J Acad Radiol; 2024 Sep; ():. PubMed ID: 39271381 [TBL] [Abstract][Full Text] [Related]
7. A delta-radiomic lymph node model using dynamic contrast enhanced MRI for the early prediction of axillary response after neoadjuvant chemotherapy in breast cancer patients. Liu S; Du S; Gao S; Teng Y; Jin F; Zhang L BMC Cancer; 2023 Jan; 23(1):15. PubMed ID: 36604679 [TBL] [Abstract][Full Text] [Related]
8. Multiphases DCE-MRI Radiomics Nomogram for Preoperative Prediction of Lymphovascular Invasion in Invasive Breast Cancer. Ma Q; Lu X; Chen Q; Gong H; Lei J Acad Radiol; 2024 Dec; 31(12):4743-4758. PubMed ID: 39107190 [TBL] [Abstract][Full Text] [Related]
9. Multiparametric MRI-based radiomics nomogram for early prediction of pathological response to neoadjuvant chemotherapy in locally advanced gastric cancer. Li J; Yin H; Wang Y; Zhang H; Ma F; Li H; Qu J Eur Radiol; 2023 Apr; 33(4):2746-2756. PubMed ID: 36512039 [TBL] [Abstract][Full Text] [Related]
10. Performance of radiomics models for tumour-infiltrating lymphocyte (TIL) prediction in breast cancer: the role of the dynamic contrast-enhanced (DCE) MRI phase. Tang WJ; Kong QC; Cheng ZX; Liang YS; Jin Z; Chen LX; Hu WK; Liang YY; Wei XH; Guo Y; Jiang XQ Eur Radiol; 2022 Feb; 32(2):864-875. PubMed ID: 34430998 [TBL] [Abstract][Full Text] [Related]
11. Comparison of MRI and CT-Based Radiomics and Their Combination for Early Identification of Pathological Response to Neoadjuvant Chemotherapy in Locally Advanced Gastric Cancer. Li J; Zhang HL; Yin HK; Zhang HK; Wang Y; Xu SN; Ma F; Gao JB; Li HL; Qu JR J Magn Reson Imaging; 2023 Sep; 58(3):907-923. PubMed ID: 36527425 [TBL] [Abstract][Full Text] [Related]
12. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics. Liu Z; Feng B; Li C; Chen Y; Chen Q; Li X; Guan J; Chen X; Cui E; Li R; Li Z; Long W J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770 [TBL] [Abstract][Full Text] [Related]
13. Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI Predicts Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Guo L; Du S; Gao S; Zhao R; Huang G; Jin F; Teng Y; Zhang L Cancers (Basel); 2022 Jul; 14(14):. PubMed ID: 35884576 [TBL] [Abstract][Full Text] [Related]
14. Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy. Ma M; Gan L; Liu Y; Jiang Y; Xin L; Liu Y; Qin N; Cheng Y; Liu Q; Xu L; Zhang Y; Wang X; Zhang X; Ye J; Wang X Eur J Radiol; 2022 Jan; 146():110095. PubMed ID: 34890936 [TBL] [Abstract][Full Text] [Related]
15. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer. Li X; Li C; Wang H; Jiang L; Chen M PeerJ; 2024; 12():e17683. PubMed ID: 39026540 [TBL] [Abstract][Full Text] [Related]
16. Combining Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Apparent Diffusion Coefficient Maps for a Radiomics Nomogram to Predict Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Chen X; Chen X; Yang J; Li Y; Fan W; Yang Z J Comput Assist Tomogr; 2020; 44(2):275-283. PubMed ID: 32004189 [TBL] [Abstract][Full Text] [Related]
17. Machine learning on MRI radiomic features: identification of molecular subtype alteration in breast cancer after neoadjuvant therapy. Liu HQ; Lin SY; Song YD; Mai SY; Yang YD; Chen K; Wu Z; Zhao HY Eur Radiol; 2023 Apr; 33(4):2965-2974. PubMed ID: 36418622 [TBL] [Abstract][Full Text] [Related]
18. Deep learning radiomic analysis of DCE-MRI combined with clinical characteristics predicts pathological complete response to neoadjuvant chemotherapy in breast cancer. Li Y; Fan Y; Xu D; Li Y; Zhong Z; Pan H; Huang B; Xie X; Yang Y; Liu B Front Oncol; 2022; 12():1041142. PubMed ID: 36686755 [TBL] [Abstract][Full Text] [Related]
19. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set. Cain EH; Saha A; Harowicz MR; Marks JR; Marcom PK; Mazurowski MA Breast Cancer Res Treat; 2019 Jan; 173(2):455-463. PubMed ID: 30328048 [TBL] [Abstract][Full Text] [Related]
20. Predictive value of triple negative breast cancer based on DCE-MRI multi-phase full-volume ROI clinical radiomics model. Qi X; Wang W; Pan S; Liu G; Xia L; Duan S; He Y Acta Radiol; 2024 Feb; 65(2):173-184. PubMed ID: 38017694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]