These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37169823)

  • 1. Equivalent running leg lengths require prosthetic legs to be longer than biological legs during standing.
    Zhang-Lea JH; Tacca JR; Beck ON; Taboga P; Grabowski AM
    Sci Rep; 2023 May; 13(1):7679. PubMed ID: 37169823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.
    Beck ON; Taboga P; Grabowski AM
    J Appl Physiol (1985); 2017 Jul; 123(1):38-48. PubMed ID: 28360121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biomechanics of the fastest sprinter with a unilateral transtibial amputation.
    Beck ON; Grabowski AM
    J Appl Physiol (1985); 2018 Mar; 124(3):641-645. PubMed ID: 29051334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations.
    Beck ON; Taboga P; Grabowski AM
    J Appl Physiol (1985); 2017 Apr; 122(4):976-984. PubMed ID: 28104752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do prosthetic stiffness, height and running speed affect the biomechanics of athletes with bilateral transtibial amputations?
    Beck ON; Taboga P; Grabowski AM
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28659414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations.
    Taboga P; Kram R; Grabowski AM
    J Exp Biol; 2016 Mar; 219(Pt 6):851-8. PubMed ID: 26985053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prosthetic model, but not stiffness or height, affects maximum running velocity in athletes with unilateral transtibial amputations.
    Taboga P; Drees EK; Beck ON; Grabowski AM
    Sci Rep; 2020 Feb; 10(1):1763. PubMed ID: 32019938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of step frequency in transtibial amputee endurance athletes using a running-specific prosthesis.
    Oudenhoven LM; Boes JM; Hak L; Faber GS; Houdijk H
    J Biomech; 2017 Jan; 51():42-48. PubMed ID: 27923481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prosthetic shape, but not stiffness or height, affects the maximum speed of sprinters with bilateral transtibial amputations.
    Taboga P; Beck ON; Grabowski AM
    PLoS One; 2020; 15(2):e0229035. PubMed ID: 32078639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leg stiffness of sprinters using running-specific prostheses.
    McGowan CP; Grabowski AM; McDermott WJ; Herr HM; Kram R
    J R Soc Interface; 2012 Aug; 9(73):1975-82. PubMed ID: 22337629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sprint kinematics of athletes with lower-limb amputations.
    Buckley JG
    Arch Phys Med Rehabil; 1999 May; 80(5):501-8. PubMed ID: 10326911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the Mechanical Properties of Running-Specific Prostheses.
    Beck ON; Taboga P; Grabowski AM
    PLoS One; 2016; 11(12):e0168298. PubMed ID: 27973573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Athletes With Versus Without Leg Amputations: Different Biomechanics, Similar Running Economy.
    Beck ON; Grabowski AM
    Exerc Sport Sci Rev; 2019 Jan; 47(1):15-21. PubMed ID: 30334850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Added lower limb mass does not affect biomechanical asymmetry but increases metabolic power in runners with a unilateral transtibial amputation.
    Alcantara RS; Beck ON; Grabowski AM
    Eur J Appl Physiol; 2020 Jun; 120(6):1449-1456. PubMed ID: 32347372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of running speed and leg prostheses on mediolateral foot placement and its variability.
    Arellano CJ; McDermott WJ; Kram R; Grabowski AM
    PLoS One; 2015; 10(1):e0115637. PubMed ID: 25590634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic elastic response prostheses alter approach angles and ground reaction forces but not leg stiffness during a start-stop task.
    Haber CK; Ritchie LJ; Strike SC
    Hum Mov Sci; 2018 Apr; 58():337-346. PubMed ID: 29269103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees.
    Strike SC; Arcone D; Orendurff M
    Gait Posture; 2018 May; 62():327-332. PubMed ID: 29614465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amputee locomotion: spring-like leg behavior and stiffness regulation using running-specific prostheses.
    Hobara H; Baum BS; Kwon HJ; Miller RH; Ogata T; Kim YH; Shim JK
    J Biomech; 2013 Sep; 46(14):2483-9. PubMed ID: 23953671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First and Second Step Characteristics of Amputee and Able-Bodied Sprinters.
    Strutzenberger G; Brazil A; Exell T; von Lieres Und Wilkau H; Davies JD; Willwacher S; Funken J; Müller R; Heinrich K; Schwameder H; Potthast W; Irwin G
    Int J Sports Physiol Perform; 2018 Aug; 13(7):874-881. PubMed ID: 29252086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amputee Locomotion: Joint Moment Adaptations to Running Speed Using Running-Specific Prostheses after Unilateral Transtibial Amputation.
    Baum BS; Hobara H; Koh K; Kwon HJ; Miller RH; Shim JK
    Am J Phys Med Rehabil; 2019 Mar; 98(3):182-190. PubMed ID: 29406403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.