These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 37169903)

  • 1. Improvements in Bioremediation Agents and Their Modified Strains in Mediating Environmental Pollution.
    Ahmad A; Mustafa G; Rana A; Zia AR
    Curr Microbiol; 2023 May; 80(6):208. PubMed ID: 37169903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering microbes for enhancing the degradation of environmental pollutants: A detailed review on synthetic biology.
    Yaashikaa PR; Devi MK; Kumar PS
    Environ Res; 2022 Nov; 214(Pt 1):113868. PubMed ID: 35835162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetically engineered microbial scavengers for enhanced bioremediation.
    Tran KM; Lee HM; Thai TD; Shen J; Eyun SI; Na D
    J Hazard Mater; 2021 Oct; 419():126516. PubMed ID: 34218189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological approaches practised using genetically engineered microbes for a sustainable environment: A review.
    Pant G; Garlapati D; Agrawal U; Prasuna RG; Mathimani T; Pugazhendhi A
    J Hazard Mater; 2021 Mar; 405():124631. PubMed ID: 33278727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach.
    Saravanan A; Kumar PS; Duc PA; Rangasamy G
    Chemosphere; 2023 Feb; 313():137323. PubMed ID: 36410512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive review of metabolic and genomic aspects of PAH-degradation.
    Sakshi ; Haritash AK
    Arch Microbiol; 2020 Oct; 202(8):2033-2058. PubMed ID: 32506150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of microbial genome in environmental remediation.
    Kugarajah V; Nisha KN; Jayakumar R; Sahabudeen S; Ramakrishnan P; Mohamed SB
    Microbiol Res; 2023 Jun; 271():127360. PubMed ID: 36931127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes.
    Saravanan A; Kumar PS; Vo DN; Jeevanantham S; Karishma S; Yaashikaa PR
    J Hazard Mater; 2021 Oct; 419():126451. PubMed ID: 34174628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review.
    Pratush A; Kumar A; Hu Z
    Int Microbiol; 2018 Sep; 21(3):97-106. PubMed ID: 30810952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of toxic heavy metals using genetically engineered microbes: Molecular tools, risk assessment and management strategies.
    Saravanan A; Kumar PS; Ramesh B; Srinivasan S
    Chemosphere; 2022 Jul; 298():134341. PubMed ID: 35307383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A critical review on microbes-based treatment strategies for mitigation of toxic pollutants.
    Sharma P; Parakh SK; Singh SP; Parra-Saldívar R; Kim SH; Varjani S; Tong YW
    Sci Total Environ; 2022 Aug; 834():155444. PubMed ID: 35461941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging role of microalgae in heavy metal bioremediation.
    Manikandan A; Suresh Babu P; Shyamalagowri S; Kamaraj M; Muthukumaran P; Aravind J
    J Basic Microbiol; 2022 Mar; 62(3-4):330-347. PubMed ID: 34724223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects.
    Narayanan M; Ali SS; El-Sheekh M
    J Environ Manage; 2023 May; 334():117532. PubMed ID: 36801803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioengineered microbial strains for detoxification of toxic environmental pollutants.
    Maqsood Q; Sumrin A; Waseem R; Hussain M; Imtiaz M; Hussain N
    Environ Res; 2023 Jun; 227():115665. PubMed ID: 36907340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents.
    Ayangbenro AS; Babalola OO
    Int J Environ Res Public Health; 2017 Jan; 14(1):. PubMed ID: 28106848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals.
    Sharma P; Bano A; Singh SP; Sharma S; Xia C; Nadda AK; Lam SS; Tong YW
    Chemosphere; 2022 Nov; 306():135538. PubMed ID: 35792210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives.
    Singh JS; Abhilash PC; Singh HB; Singh RP; Singh DP
    Gene; 2011 Jul; 480(1-2):1-9. PubMed ID: 21402131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioremediation through microbes: systems biology and metabolic engineering approach.
    Dangi AK; Sharma B; Hill RT; Shukla P
    Crit Rev Biotechnol; 2019 Feb; 39(1):79-98. PubMed ID: 30198342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment.
    Wu C; Li F; Yi S; Ge F
    J Environ Manage; 2021 Oct; 296():113185. PubMed ID: 34243092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.