BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37169957)

  • 1. Modeling the influence of the extrinsic musculature on phonation.
    Serry MA; Alzamendi GA; Zañartu M; Peterson SD
    Biomech Model Mechanobiol; 2023 Aug; 22(4):1365-1378. PubMed ID: 37169957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function of the interarytenoid muscle in a canine laryngeal model.
    Nasri S; Beizai P; Sercarz JA; Kreiman J; Graves MC; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Dec; 103(12):975-82. PubMed ID: 7993010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the mechanics of fundamental frequency variation during phonation onset.
    Serry MA; Stepp CE; Peterson SD
    Biomech Model Mechanobiol; 2023 Feb; 22(1):339-356. PubMed ID: 36370231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function of the thyroarytenoid muscle in a canine laryngeal model.
    Choi HS; Berke GS; Ye M; Kreiman J
    Ann Otol Rhinol Laryngol; 1993 Oct; 102(10):769-76. PubMed ID: 8215096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of strap muscles in phonation--in vivo canine laryngeal model.
    Hong KH; Ye M; Kim YM; Kevorkian KF; Berke GS
    J Voice; 1997 Mar; 11(1):23-32. PubMed ID: 9075173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of the posterior cricoarytenoid muscle in phonation: in vivo laryngeal model.
    Choi HS; Berke GS; Ye M; Kreiman J
    Otolaryngol Head Neck Surg; 1993 Dec; 109(6):1043-51. PubMed ID: 8265188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Euler-Bernoulli-type beam model of the vocal folds for describing curved and incomplete glottal closure patterns.
    Serry MA; Alzamendi GA; Zañartu M; Peterson SD
    J Mech Behav Biomed Mater; 2023 Nov; 147():106130. PubMed ID: 37774440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of adductory force of individual laryngeal muscles in an in vivo canine model.
    Nasri S; Sercarz JA; Azizzadeh B; Kreiman J; Berke GS
    Laryngoscope; 1994 Oct; 104(10):1213-8. PubMed ID: 7934590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function of the interarytenoid(IA) muscle in phonation: in vivo laryngeal model.
    Choi HS; Ye M; Berke GS
    Yonsei Med J; 1995 Mar; 36(1):58-67. PubMed ID: 7740837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonation Threshold Pressure Revisited: Effects of Intrinsic Laryngeal Muscle Activation.
    Azar SS; Chhetri DK
    Laryngoscope; 2022 Jul; 132(7):1427-1432. PubMed ID: 34784055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibratory Onset of Adductor Spasmodic Dysphonia and Muscle Tension Dysphonia: A High-Speed Video Study✰.
    Chen W; Woo P; Murry T
    J Voice; 2020 Jul; 34(4):598-603. PubMed ID: 30595236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies.
    Yin J; Zhang Z
    J Acoust Soc Am; 2013 May; 133(5):2972-83. PubMed ID: 23654401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative model of voice F0 control.
    Farley GR
    J Acoust Soc Am; 1994 Feb; 95(2):1017-29. PubMed ID: 8132896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the posterior cricoarytenoid muscle in phonation: an electromyographic investigation in dogs.
    Mu LC; Yang SL
    Laryngoscope; 1991 Aug; 101(8):849-54. PubMed ID: 1865733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics of fundamental frequency regulation: Constitutive modeling of the vocal fold lamina propria.
    Chan RW; Siegmund T; Zhang K
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):181-9. PubMed ID: 19415568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular control of fundamental frequency and glottal posture at phonation onset.
    Chhetri DK; Neubauer J; Berry DA
    J Acoust Soc Am; 2012 Feb; 131(2):1401-12. PubMed ID: 22352513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating phonation through alteration of vocal fold medial surface contour.
    Mau T; Muhlestein J; Callahan S; Chan RW
    Laryngoscope; 2012 Sep; 122(9):2005-14. PubMed ID: 22865592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated effects of cricothyroid and thyroarytenoid muscle activation on adult-male vocal fold vibration.
    Lowell SY; Story BH
    J Acoust Soc Am; 2006 Jul; 120(1):386-97. PubMed ID: 16875234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.