These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 3717010)

  • 1. Survey analysis of volatile organics released from plastics under thermal stress.
    Kalman DA
    Am Ind Hyg Assoc J; 1986 May; 47(5):270-5. PubMed ID: 3717010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas chromatographic-mass spectrometric analysis of some potential toxicants amongst volatile compounds emitted during large-scale thermal degradation of poly(acrylonitrile-butadiene-styrene) plastic.
    Shapi MM; Hesso A
    J Chromatogr; 1991 Jan; 562(1-2):681-96. PubMed ID: 2026731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Toxic substances from the use of coolant lubricants].
    Balabanova B; Mukhtarova M
    Probl Khig; 1994; 19():118-24. PubMed ID: 7845983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple gas chromatographic method for the analysis of trace organics in ambient air.
    Parkes DG; Ganz CR; Polinsky A; Schulze J
    Am Ind Hyg Assoc J; 1976 Mar; 37(3):165-73. PubMed ID: 1266735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS.
    Wu CH; Feng CT; Lo YS; Lin TY; Lo JG
    Chemosphere; 2004 Jul; 56(1):71-80. PubMed ID: 15109881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of semi-volatile organic compounds emitted during heating of nitrogen-containing plastics at low temperature.
    Watanabe M; Nakata C; Wu W; Kawamoto K; Noma Y
    Chemosphere; 2007 Aug; 68(11):2063-72. PubMed ID: 17383710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas chromatographic/mass spectrometric analysis of extracts of workplace air samples for nitrosamines.
    Cooper CV
    Am Ind Hyg Assoc J; 1987 Mar; 48(3):265-70. PubMed ID: 3578037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating exposures to complex mixtures of chemicals during a new production process in the plastics industry.
    Meijster T; Burstyn I; Van Wendel De Joode B; Posthumus MA; Kromhout H
    Ann Occup Hyg; 2004 Aug; 48(6):499-507. PubMed ID: 15292039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Headspace solvent microextraction-gas chromatography-mass spectrometry for the analysis of volatile compounds from Foeniculum vulgare Mill.
    Fang L; Qi M; Li T; Shao Q; Fu R
    J Pharm Biomed Anal; 2006 Jun; 41(3):791-7. PubMed ID: 16488098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Harmful substances released during the thermal oxidative destruction of coolant lubricants].
    Mukhtarova M; Balabanova B
    Probl Khig; 1994; 19():124-30. PubMed ID: 7845984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of liquid-liquid extraction with headspace methods for the characterization of volatile fractions of commercial hydrolats from typically Mediterranean species.
    Paolini J; Leandri C; Desjobert JM; Barboni T; Costa J
    J Chromatogr A; 2008 Jun; 1193(1-2):37-49. PubMed ID: 18457843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rubber manufacture: sampling and identification of volatile pollutants.
    Cocheo V; Bellomo ML; Bombi GG
    Am Ind Hyg Assoc J; 1983 Jul; 44(7):521-7. PubMed ID: 6613855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of HS-SPME in the determination of potentially toxic organic compounds emitted from resin-based dental materials.
    Rogalewicz R; Voelkel A; Kownacki I
    J Environ Monit; 2006 Mar; 8(3):377-83. PubMed ID: 16528422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying thermal breakdown products of thermoplastics.
    Guillemot M; Oury B; Melin S
    J Occup Environ Hyg; 2017 Jul; 14(7):551-561. PubMed ID: 28426293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of the harmful products of polyvinyl chloride during thermal processing by using PGC-MS].
    Jin XG
    Zhonghua Yu Fang Yi Xue Za Zhi; 1984 Nov; 18(6):321-4. PubMed ID: 6543730
    [No Abstract]   [Full Text] [Related]  

  • 16. Investigation of characterization method for nanoparticles in roadside atmosphere by thermal desorption-gas chromatography/mass spectrometry using a pyrolyzer.
    Fushimi A; Tanabe K; Hasegawa S; Kobayashi S
    Sci Total Environ; 2007 Nov; 386(1-3):83-92. PubMed ID: 17590418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishing a protocol from laboratory studies to be used in field sampling operations.
    Grote AA; Kim WS; Kupel RE
    Am Ind Hyg Assoc J; 1978 Nov; 39(11):880-4. PubMed ID: 735999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A passive sampling-based analytical strategy for the determination of volatile organic compounds in the air of working areas.
    Ly-VerdĂș S; Esteve-Turrillas FA; Pastor A; de la Guardia M
    Anal Chim Acta; 2010 Sep; 677(2):131-9. PubMed ID: 20837179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of potential migrants from samples of dual-ovenable plastics.
    Gramshaw JW; Vandenburg HJ; Lakin RA
    Food Addit Contam; 1995; 12(2):211-22. PubMed ID: 7781818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a headspace sorptive extraction method for the analysis of volatile components in South African wines.
    Weldegergis BT; Tredoux AG; Crouch AM
    J Agric Food Chem; 2007 Oct; 55(21):8696-702. PubMed ID: 17927151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.