These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37170309)

  • 1. Wild common crossbills produce redder body feathers when their wings are clipped.
    Fernández-Eslava B; Cantarero A; Alonso D; Alonso-Alvarez C
    BMC Zool; 2022 Aug; 7(1):47. PubMed ID: 37170309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bigger or long-winged male common crossbills exhibit redder carotenoid-based plumage coloration.
    Fernández-Eslava B; Alonso D; Galicia D; Arizaga J; Alonso-Alvarez C
    Curr Zool; 2023 Apr; 69(2):165-172. PubMed ID: 37091992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing the shared-pathway hypothesis in the carotenoid-based coloration of red crossbills.
    Cantarero A; Mateo R; Camarero PR; Alonso D; Fernandez-Eslava B; Alonso-Alvarez C
    Evolution; 2020 Oct; 74(10):2348-2364. PubMed ID: 32749066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An age-related decline in the expression of a red carotenoid-based ornament in wild birds.
    Fernández-Eslava B; Alonso D; Alonso-Alvarez C
    Evolution; 2021 Dec; 75(12):3142-3153. PubMed ID: 34643274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific carotenoid pigments in the diet and a bit of oxidative stress in the recipe for producing red carotenoid-based signals.
    García-de Blas E; Mateo R; Alonso-Alvarez C
    PeerJ; 2016; 4():e2237. PubMed ID: 27635308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plumage redness signals mitochondrial function in the house finch.
    Hill GE; Hood WR; Ge Z; Grinter R; Greening C; Johnson JD; Park NR; Taylor HA; Andreasen VA; Powers MJ; Justyn NM; Parry HA; Kavazis AN; Zhang Y
    Proc Biol Sci; 2019 Sep; 286(1911):20191354. PubMed ID: 31551059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the carotenoid-based sexual signalling mechanism by altering
    Cantarero A; Andrade P; Carneiro M; Moreno-Borrallo A; Alonso-Alvarez C
    Proc Biol Sci; 2020 Nov; 287(1938):20201067. PubMed ID: 33171089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to reduce the costs of ornaments without reducing their effectiveness? An example of a mechanism from carotenoid-based plumage.
    Surmacki A; Ragan A; Kosiński Z; Tobółka M; Podkowa P
    Behav Ecol Sociobiol; 2016; 70():695-700. PubMed ID: 27194821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free radical exposure creates paler carotenoid-based ornaments: a possible interaction in the expression of black and red traits.
    Alonso-Alvarez C; Galván I
    PLoS One; 2011 Apr; 6(4):e19403. PubMed ID: 21556328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Color expression in experimentally regrown feathers of an overwintering migratory bird: implications for signaling and seasonal interactions.
    Tonra CM; Marini KL; Marra PP; Germain RR; Holberton RL; Reudink MW
    Ecol Evol; 2014 Apr; 4(8):1222-32. PubMed ID: 24834321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Captivity affects mitochondrial aerobic respiration and carotenoid metabolism in the house finch (Haemorhous mexicanus).
    Koch RE; Okegbe C; Ramanathan C; Zhu X; Hare E; Toomey MB; Hill GE; Zhang Y
    J Exp Biol; 2024 Apr; 227(9):. PubMed ID: 38634224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testosterone Coordinates Gene Expression Across Different Tissues to Produce Carotenoid-Based Red Ornamentation.
    Khalil S; Enbody ED; Frankl-Vilches C; Welklin JF; Koch RE; Toomey MB; Sin SYW; Edwards SV; Gahr M; Schwabl H; Webster MS; Karubian J
    Mol Biol Evol; 2023 Apr; 40(4):. PubMed ID: 36911907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carotenoid coloration in greenfinches is individually consistent irrespective of foraging ability.
    Karu U; Saks L; Hõrak P
    Physiol Biochem Zool; 2007; 80(6):663-70. PubMed ID: 17910002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interspecific variation in the use of carotenoid-based coloration in birds: diet, life history and phylogeny.
    Olson VA; Owens IP
    J Evol Biol; 2005 Nov; 18(6):1534-46. PubMed ID: 16313466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of carotenoid-based plumage colours in passerine birds.
    Delhey K; Valcu M; Dale J; Kempenaers B
    J Anim Ecol; 2023 Jan; 92(1):66-77. PubMed ID: 35899818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary canthaxanthin reduces xanthophyll uptake and red coloration in adult red-legged partridges.
    Alonso-Alvarez C; García-de Blas E; Mateo R
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30224370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronizing feather-based measures of corticosterone and carotenoid-dependent signals: what relationships do we expect?
    Fairhurst GD; Dawson RD; van Oort H; Bortolotti GR
    Oecologia; 2014 Mar; 174(3):689-98. PubMed ID: 24233689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avian color expression and perception: is there a carotenoid link?
    Toomey MB; Ronald KL
    J Exp Biol; 2021 Jun; 224(12):. PubMed ID: 34142139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plumage coloration and social context influence male investment in song.
    Henderson LJ; Brazeal KR; Hahn TP
    Biol Lett; 2018 Jul; 14(7):. PubMed ID: 30021863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of carotenoid pigmentation in caciques and meadowlarks (Icteridae): repeated gains of red plumage coloration by carotenoid C4-oxygenation.
    Friedman NR; McGraw KJ; Omland KE
    Evolution; 2014 Mar; 68(3):791-801. PubMed ID: 24164419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.