BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37170699)

  • 21. Phosphorus sources, forms, and abundance as a function of streamflow and field conditions in a Maumee River tributary, 2016-2019.
    Williamson TN; Dobrowolski EG; Kreiling RM
    J Environ Qual; 2023; 52(3):492-507. PubMed ID: 34543452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery.
    Zhang P; Ke Y; Zhang Z; Wang M; Li P; Zhang S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ bioreactors and deep drain-pipe installation to reduce nitrate losses in artificially drained fields.
    Jaynes DB; Kaspar TC; Moorman TB; Parkin TB
    J Environ Qual; 2008; 37(2):429-36. PubMed ID: 18268306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field.
    Chrétien F; Giroux I; Thériault G; Gagnon P; Corriveau J
    Environ Pollut; 2017 May; 224():255-264. PubMed ID: 28209433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping of Agricultural Subsurface Drainage Systems Using Unmanned Aerial Vehicle Imagery and Ground Penetrating Radar.
    Koganti T; Ghane E; Martinez LR; Iversen BV; Allred BJ
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the performance of fusion based planet-scope and Sentinel-2 data for crop classification using inception inspired deep convolutional neural network.
    Minallah N; Tariq M; Aziz N; Khan W; Rehman AU; Belhaouari SB
    PLoS One; 2020; 15(9):e0239746. PubMed ID: 32986785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Important factors when simulating the water and nitrogen balance in a tile-drained agricultural field under long-term monitoring.
    Motarjemi SK; Rosenbom AE; Iversen BV; Plauborg F
    Sci Total Environ; 2021 Sep; 787():147610. PubMed ID: 34004535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Legacy phosphorus concentration-discharge relationships in surface runoff and tile drainage from Ohio crop fields.
    Osterholz WR; Hanrahan BR; King KW
    J Environ Qual; 2020 May; 49(3):675-687. PubMed ID: 33016383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Watershed- and reach-scale drivers of phosphorus retention and release by streambed sediment in a western Lake Erie watershed during summer.
    Kreiling RM; Perner PM; Breckner KJ; Williamson TN; Bartsch LA; Hood JM; Manning NF; Johnson LT
    Sci Total Environ; 2023 Mar; 863():160804. PubMed ID: 36567200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of Overland and Tile Flow to Runoff and Nutrient Losses from Vertisols in Manitoba, Canada.
    Kokulan V; Macrae ML; Lobb DA; Ali GA
    J Environ Qual; 2019 Jul; 48(4):959-965. PubMed ID: 31589685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie.
    Kast JB; Apostel AM; Kalcic MM; Muenich RL; Dagnew A; Long CM; Evenson G; Martin JF
    J Environ Manage; 2021 Feb; 279():111803. PubMed ID: 33341725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Geochemical and isotopic tracing of water in nested southern Minnesota corn-belt watersheds.
    Magner JA; Alexander SC
    Water Sci Technol; 2002; 45(9):37-42. PubMed ID: 12079122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating relationships between climate controls and nutrient flux in surface waters, sediments, and subsurface pathways in an agricultural clay catchment of the Great Lakes Basin.
    May H; Rixon S; Gardner S; Goel P; Levison J; Binns A
    Sci Total Environ; 2023 Mar; 864():160979. PubMed ID: 36549520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery.
    Connolly J; Holden NM
    Carbon Balance Manag; 2017 Dec; 12(1):7. PubMed ID: 28413851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling and assessing water and nutrient balances in a tile-drained agricultural watershed in the U.S. Corn Belt.
    Ren D; Engel B; Mercado JAV; Guo T; Liu Y; Huang G
    Water Res; 2022 Feb; 210():117976. PubMed ID: 34953214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorus removal from agricultural tile drainage effluent with activated alumina in novel adsorption reactors.
    Husk B; Balch G; Sanchez JS; Ejack L; Whalen JK
    J Environ Qual; 2024; 53(2):220-231. PubMed ID: 38243780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling water outflow from tile-drained agricultural fields.
    Kuzmanovski V; Trajanov A; Leprince F; Džeroski S; Debeljak M
    Sci Total Environ; 2015 Feb; 505():390-401. PubMed ID: 25461041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engaging Stakeholders To Define Feasible and Desirable Agricultural Conservation in Western Lake Erie Watersheds.
    Kalcic MM; Kirchhoff C; Bosch N; Muenich RL; Murray M; Griffith Gardner J; Scavia D
    Environ Sci Technol; 2016 Aug; 50(15):8135-45. PubMed ID: 27336855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controls on subsurface nitrate and dissolved reactive phosphorus losses from agricultural fields during precipitation-driven events.
    Hanrahan BR; King KW; Williams MR
    Sci Total Environ; 2021 Feb; 754():142047. PubMed ID: 33254852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.
    Moriasi DN; Gowda PH; Arnold JG; Mulla DJ; Ale S; Steiner JL; Tomer MD
    J Environ Qual; 2013 Nov; 42(6):1699-710. PubMed ID: 25602410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.