BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37171117)

  • 1. Dissecting calvarial bones and sutures at single-cell resolution.
    Li B; Li J; Fan Y; Zhao Z; Li L; Okano H; Ouchi T
    Biol Rev Camb Philos Soc; 2023 Oct; 98(5):1749-1767. PubMed ID: 37171117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration.
    Maruyama T
    Keio J Med; 2019; 68(2):42. PubMed ID: 31243185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cranial Suture Mesenchymal Stem Cells: Insights and Advances.
    Li B; Wang Y; Fan Y; Ouchi T; Zhao Z; Li L
    Biomolecules; 2021 Jul; 11(8):. PubMed ID: 34439795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development.
    Kim HJ; Rice DP; Kettunen PJ; Thesleff I
    Development; 1998 Apr; 125(7):1241-51. PubMed ID: 9477322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cranium growth, patterning and homeostasis.
    Ang PS; Matrongolo MJ; Zietowski ML; Nathan SL; Reid RR; Tischfield MA
    Development; 2022 Nov; 149(22):. PubMed ID: 36408946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cranial sutures as intramembranous bone growth sites.
    Opperman LA
    Dev Dyn; 2000 Dec; 219(4):472-85. PubMed ID: 11084647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients.
    Song D; Zhang F; Reid RR; Ye J; Wei Q; Liao J; Zou Y; Fan J; Ma C; Hu X; Qu X; Chen L; Li L; Yu Y; Yu X; Zhang Z; Zhao C; Zeng Z; Zhang R; Yan S; Wu T; Wu X; Shu Y; Lei J; Li Y; Zhang W; Wang J; Lee MJ; Wolf JM; Huang D; He TC
    J Cell Mol Med; 2017 Nov; 21(11):2782-2795. PubMed ID: 28470873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unravelling the molecular control of calvarial suture fusion in children with craniosynostosis.
    Coussens AK; Wilkinson CR; Hughes IP; Morris CP; van Daal A; Anderson PJ; Powell BC
    BMC Genomics; 2007 Dec; 8():458. PubMed ID: 18076769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis.
    Di Pietro L; Barba M; Prampolini C; Ceccariglia S; Frassanito P; Vita A; Guadagni E; Bonvissuto D; Massimi L; Tamburrini G; Parolini O; Lattanzi W
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single-cell transcriptomic atlas characterizes age-related changes of murine cranial stem cell niches.
    Li B; Li J; Li B; Ouchi T; Li L; Li Y; Zhao Z
    Aging Cell; 2023 Nov; 22(11):e13980. PubMed ID: 37681346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies in cranial suture biology: up-regulation of transforming growth factor-beta1 and basic fibroblast growth factor mRNA correlates with posterior frontal cranial suture fusion in the rat.
    Most D; Levine JP; Chang J; Sung J; McCarthy JG; Schendel SA; Longaker MT
    Plast Reconstr Surg; 1998 May; 101(6):1431-40. PubMed ID: 9583470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The suture provides a niche for mesenchymal stem cells of craniofacial bones.
    Zhao H; Feng J; Ho TV; Grimes W; Urata M; Chai Y
    Nat Cell Biol; 2015 Apr; 17(4):386-96. PubMed ID: 25799059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Development of the Calvarial Bones and Sutures and the Pathophysiology of Craniosynostosis.
    Ishii M; Sun J; Ting MC; Maxson RE
    Curr Top Dev Biol; 2015; 115():131-56. PubMed ID: 26589924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cranial suture lineage and contributions to repair of the mouse skull.
    Doro D; Liu A; Lau JS; Rajendran AK; Healy C; Krstic M; Grigoriadis AE; Iseki S; Liu KJ
    Development; 2024 Feb; 151(3):. PubMed ID: 38345329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cranial Suture Regeneration Mitigates Skull and Neurocognitive Defects in Craniosynostosis.
    Yu M; Ma L; Yuan Y; Ye X; Montagne A; He J; Ho TV; Wu Y; Zhao Z; Sta Maria N; Jacobs R; Urata M; Wang H; Zlokovic BV; Chen JF; Chai Y
    Cell; 2021 Jan; 184(1):243-256.e18. PubMed ID: 33417861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional differentiation of cranial suture-associated dura mater in vivo and in vitro: implications for suture fusion and patency.
    Greenwald JA; Mehrara BJ; Spector JA; Warren SM; Crisera FE; Fagenholz PJ; Bouletreau PJ; Longaker MT
    J Bone Miner Res; 2000 Dec; 15(12):2413-30. PubMed ID: 11127206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinol-binding protein 4 downregulation during osteogenesis and its localization to non-endocytic vesicles in human cranial suture mesenchymal cells suggest a novel tissue function.
    Leitch VD; Dwivedi PP; Anderson PJ; Powell BC
    Histochem Cell Biol; 2013 Jan; 139(1):75-87. PubMed ID: 22878527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGF-beta1, FGF-2, and receptor mRNA expression in suture mesenchyme and dura versus underlying brain in fusing and nonfusing mouse cranial sutures.
    Gosain AK; Recinos RF; Agresti M; Khanna AK
    Plast Reconstr Surg; 2004 May; 113(6):1675-84. PubMed ID: 15114129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Intertwined Evolution and Development of Sutures and Cranial Morphology.
    White HE; Goswami A; Tucker AS
    Front Cell Dev Biol; 2021; 9():653579. PubMed ID: 33842480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased bone formation and osteoblastic cell phenotype in premature cranial suture ossification (craniosynostosis).
    De Pollack C; Renier D; Hott M; Marie PJ
    J Bone Miner Res; 1996 Mar; 11(3):401-7. PubMed ID: 8852951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.