These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37171584)
41. Cobalt oxyhydroxide modified with poly-β-cyclodextrin and a cyanine dye as a nanoplatform for two-photon imaging of ascorbic acid in living cells and tissue. Yan H; Liu Y; Ren W; Shangguan J; Yang X Mikrochim Acta; 2019 Feb; 186(3):201. PubMed ID: 30796531 [TBL] [Abstract][Full Text] [Related]
42. A Catechol-Meter Based on Conventional Personal Glucose Meter for Portable Detection of Tyrosinase and Sodium Benzoate. Tian T; Zhang WY; Zhou HY; Peng LJ; Zhou X; Zhang H; Yang FQ Biosensors (Basel); 2022 Nov; 12(12):. PubMed ID: 36551051 [TBL] [Abstract][Full Text] [Related]
43. Etching reaction-based photoelectrochemical immunoassay of aflatoxin B Su L; Song Y; Fu C; Tang D Anal Chim Acta; 2019 Apr; 1052():49-56. PubMed ID: 30685041 [TBL] [Abstract][Full Text] [Related]
44. A fluorometric aptasensor for methamphetamine based on fluorescence resonance energy transfer using cobalt oxyhydroxide nanosheets and carbon dots. Saberi Z; Rezaei B; Faroukhpour H; Ensafi AA Mikrochim Acta; 2018 May; 185(6):303. PubMed ID: 29774421 [TBL] [Abstract][Full Text] [Related]
45. The determination of α-glucosidase activity through a nano fluorescent sensor of F-PDA-CoOOH. Zhang H; Wang Z; Yang X; Li ZL; Sun L; Ma J; Jiang H Anal Chim Acta; 2019 Nov; 1080():170-177. PubMed ID: 31409467 [TBL] [Abstract][Full Text] [Related]
46. Electrochemistry-Regulated Recyclable SERS Sensor for Sensitive and Selective Detection of Tyrosinase Activity. Wang L; Gan ZF; Guo D; Xia HL; Patrice FT; Hafez ME; Li DW Anal Chem; 2019 May; 91(10):6507-6513. PubMed ID: 30916930 [TBL] [Abstract][Full Text] [Related]
47. Ultrathin g-C Liu C; Li X; Deng L; Wu T; Zou G; Yang H Anal Sci; 2022 Nov; 38(11):1433-1440. PubMed ID: 36001292 [TBL] [Abstract][Full Text] [Related]
48. Ratiometric target-triggered fluorescent silicon nanoparticles probe for quantitative visualization of tyrosinase activity. Ding YZ; Wang WF; Chai T; Qiang Y; Shi YP; Yang JL Talanta; 2019 May; 197():113-121. PubMed ID: 30771911 [TBL] [Abstract][Full Text] [Related]
49. Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes. Park S; Singh A; Kim S; Yang H Anal Chem; 2014 Feb; 86(3):1560-6. PubMed ID: 24428396 [TBL] [Abstract][Full Text] [Related]
50. Ultrasensitive detection of tyrosinase with click reaction-combined dark-field imaging platform. Jin ZY; He CH; Xi CY; Wang Y; Abdalla E; Chen BB; Li DW Talanta; 2024 Jun; 273():125931. PubMed ID: 38518716 [TBL] [Abstract][Full Text] [Related]
51. A colorimetric and near -infrared ratiometric fluorescent probe for the determination of endogenous tyrosinase activity based on cyanine aggregation. Zhang P; Li S; Fu C; Zhang Q; Xiao Y; Ding C Analyst; 2019 Sep; 144(18):5472-5478. PubMed ID: 31384852 [TBL] [Abstract][Full Text] [Related]
52. Colorimetric tyrosinase assay based on catechol inhibition of the oxidase-mimicking activity of chitosan-stabilized platinum nanoparticles. Deng HH; Lin XL; He SB; Wu GW; Wu WH; Yang Y; Lin Z; Peng HP; Xia XH; Chen W Mikrochim Acta; 2019 Apr; 186(5):301. PubMed ID: 31028498 [TBL] [Abstract][Full Text] [Related]
53. Interfacially Super-Assembled Tyramine-Modified Mesoporous Silica-Alumina Oxide Heterochannels for Label-Free Tyrosinase Detection. Zeng H; Zhou S; Xie L; Zhang X; Zeng J; Yan M; Liang Q; Liu T; Liang K; Zhang L; Chen P; Jiang L; Kong B Anal Chem; 2022 Feb; 94(5):2589-2596. PubMed ID: 34962369 [TBL] [Abstract][Full Text] [Related]
54. A colorimetric and SERS dual-readout sensor for sensitive detection of tyrosinase activity based on 4-mercaptophenyl boronic acid modified AuNPs. Zhuang X; Hu Y; Wang J; Hu J; Wang Q; Yu X Anal Chim Acta; 2021 Dec; 1188():339172. PubMed ID: 34794563 [TBL] [Abstract][Full Text] [Related]
55. Functionalized carbon quantum dots with dopamine for tyrosinase activity analysis. Hu JJ; Bai XL; Liu YM; Liao X Anal Chim Acta; 2017 Dec; 995():99-105. PubMed ID: 29126486 [TBL] [Abstract][Full Text] [Related]
56. A fluorescence resonance energy transfer (FRET) based "Turn-On" nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening. Li G; Kong W; Zhao M; Lu S; Gong P; Chen G; Xia L; Wang H; You J; Wu Y Biosens Bioelectron; 2016 May; 79():728-35. PubMed ID: 26774085 [TBL] [Abstract][Full Text] [Related]
57. Bionanosensor based on N-doped graphene quantum dots coupled with CoOOH nanosheets and their application for in vivo analysis of ascorbic acid. Wang C; Pan C; Wei Z; Wei X; Yang F; Mao L Anal Chim Acta; 2020 Mar; 1100():191-199. PubMed ID: 31987140 [TBL] [Abstract][Full Text] [Related]
58. Serum tyrosinase in malignant disease, its activity, and the electrophoretic patterns of the enzyme as carried by immunoglobulins'. Chen YM; Lim BT; Chavin W Cancer Res; 1979 Sep; 39(9):3485-90. PubMed ID: 113092 [TBL] [Abstract][Full Text] [Related]
59. Electrocatalytic performance of tyrosinase detection in Penaeus vannamei based on a [(PSS/PPy)(P Ding XM; Cai SX; Wang L; Zhang YC Anal Methods; 2021 Mar; 13(11):1392-1403. PubMed ID: 33650584 [TBL] [Abstract][Full Text] [Related]
60. Tyrosinase-Based Biosensors for Selective Dopamine Detection. Florescu M; David M Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]